The neural bases of momentary lapses in attention

被引:1222
作者
Weissman, D. H. [1 ]
Roberts, K. C.
Visscher, K. M.
Woldorff, M. G.
机构
[1] Duke Univ, Ctr Cognit Neurosci, Durham, NC 27708 USA
[2] Duke Univ, Dept Psychiat, Durham, NC 27708 USA
[3] Brandeis Univ, Volen Ctr Complex Syst, Waltham, MA 02454 USA
关键词
D O I
10.1038/nn1727
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Momentary lapses in attention frequently impair goal-directed behavior, sometimes with serious consequences. Nevertheless, we lack an integrated view of the brain mechanisms underlying such lapses. By investigating trial-by-trial relationships between brain activity and response time in humans, we determined that attentional lapses begin with reduced prestimulus activity in anterior cingulate and right prefrontal regions involved in controlling attention. Less efficient stimulus processing during attentional lapses was also characterized by less deactivation of a 'default-mode' network, reduced stimulus-evoked sensory activity, and increased activity in widespread regions of frontal and parietal cortex. Finally, consistent with a mechanism for recovering from attentional lapses, increased stimulus-evoked activity in the right inferior frontal gyrus and the right temporal-parietal junction predicted better performance on the next trial. Our findings provide a new, system-wide understanding of the patterns of brain activity that are associated with brief attentional lapses, which informs both theoretical and clinical models of goal-directed behavior.
引用
收藏
页码:971 / 978
页数:8
相关论文
共 50 条
[1]   The cognitive neuroscience of response inhibition: Relevance for genetic research in attention-deficit/hyperactivity disorder [J].
Aron, AR ;
Poldrack, RA .
BIOLOGICAL PSYCHIATRY, 2005, 57 (11) :1285-1292
[2]   fMRI studies of stroop tasks reveal unique roles of anterior and posterior brain systems in attentional selection [J].
Banich, MT ;
Milham, MP ;
Atchley, R ;
Cohen, NJ ;
Webb, A ;
Wszalek, T ;
Kramer, AF ;
Liang, ZP ;
Wright, A ;
Shenker, J ;
Magin, R .
JOURNAL OF COGNITIVE NEUROSCIENCE, 2000, 12 (06) :988-1000
[3]   Engrossed in conversation: The impact of cell phones on simulated driving performance [J].
Beede, KE ;
Kass, SJ .
ACCIDENT ANALYSIS AND PREVENTION, 2006, 38 (02) :415-421
[4]   Conflict monitoring and cognitive control [J].
Botvinick, MM ;
Braver, TS ;
Barch, DM ;
Carter, CS ;
Cohen, JD .
PSYCHOLOGICAL REVIEW, 2001, 108 (03) :624-652
[5]   Linear systems analysis of functional magnetic resonance imaging in human V1 [J].
Boynton, GM ;
Engel, SA ;
Glover, GH ;
Heeger, DJ .
JOURNAL OF NEUROSCIENCE, 1996, 16 (13) :4207-4221
[6]   Functional-anatomic correlates of object priming in humans revealed by rapid presentation event-related fMRI [J].
Buckner, RL ;
Goodman, J ;
Burock, M ;
Rotte, M ;
Koutstaal, W ;
Schacter, D ;
Rosen, B ;
Dale, AM .
NEURON, 1998, 20 (02) :285-296
[7]   Aging gracefully: Compensatory brain activity in high-performing older adults [J].
Cabeza, R ;
Anderson, ND ;
Locantore, JK ;
McIntosh, AR .
NEUROIMAGE, 2002, 17 (03) :1394-1402
[8]   Parsing executive processes: Strategic vs. evaluative functions of the anterior cingulate cortex [J].
Carter, CS ;
Macdonald, AM ;
Botvinick, M ;
Ross, LL ;
Stenger, VA ;
Noll, D ;
Cohen, JD .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (04) :1944-1948
[9]   Varieties of attention-deficit/hyperactivity disorder-related intra-individual variability [J].
Castellanos, FX ;
Sonuga-Barke, EJS ;
Scheres, A ;
Di Martino, A ;
Hyde, C ;
Walters, JR .
BIOLOGICAL PSYCHIATRY, 2005, 57 (11) :1416-1423
[10]   Voluntary orienting is dissociated from target detection in human posterior parietal cortex [J].
Corbetta, M ;
Kincade, JM ;
Ollinger, JM ;
McAvoy, MP ;
Shulman, GL .
NATURE NEUROSCIENCE, 2000, 3 (03) :292-297