Uncertainty relation for Fisher information of D-dimensional single-particle systems with central potentials

被引:72
作者
Romera, Elvira [1 ]
Sanchez-Moreno, P.
Dehesa, J. S.
机构
[1] Univ Granada, Dept Fis Atom Mol & Nucl, E-18071 Granada, Spain
[2] Univ Granada, Inst Carlos Fis Teor & Computac 1, E-18071 Granada, Spain
关键词
D O I
10.1063/1.2357998
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
An uncertainty Fisher information relation in quantum mechanics is derived for multidimensional single-particle systems with central potentials. It is based on the concept of Fisher information in the two complementary position and momentum spaces, which is a gradient functional of the corresponding probability distributions. The lower bound of the product of position and momentum Fisher informations is shown to depend on the orbital and magnetic quantum numbers of the physical state and the space dimensionality. Applications to various elementary systems is discussed. (c) 2006 American Institute of Physics.
引用
收藏
页数:11
相关论文
共 38 条
[1]  
[Anonymous], SCI FISHER INFORMATI
[2]   INEQUALITIES IN FOURIER-ANALYSIS [J].
BECKNER, W .
ANNALS OF MATHEMATICS, 1975, 102 (01) :159-182
[3]   UNCERTAINTY RELATIONS FOR INFORMATION ENTROPY IN WAVE MECHANICS [J].
BIALYNICKIBIRULA, I ;
MYCIELSKI, J .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1975, 44 (02) :129-132
[4]   LARGE-N EXPANSIONS IN QUANTUM-MECHANICS, ATOMIC PHYSICS AND SOME O(N) INVARIANT-SYSTEMS [J].
CHATTERJEE, A .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1990, 186 (06) :249-370
[5]  
Cover T. M., 2005, ELEM INF THEORY, DOI 10.1002/047174882X
[6]   Fisher information of D-dimensional hydrogenic systems in position and momentum spaces [J].
Dehesa, J. S. ;
Lopez-Rosa, S. ;
Olmos, B. ;
Yanez, R. J. .
JOURNAL OF MATHEMATICAL PHYSICS, 2006, 47 (05)
[7]   Information-theoretic measures for Morse and Poschl-Teller potentials [J].
Dehesa, JS ;
Martínez-Finkelshtein, A ;
Sorokin, VN .
MOLECULAR PHYSICS, 2006, 104 (04) :613-622
[8]   Information measures of hydrogenic systems, Laguerre polynomials and spherical harmonics [J].
Dehesa, JS ;
López-Rosa, S ;
Olmos, B ;
Yáñez, RJ .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2005, 179 (1-2) :185-194
[9]   INFORMATION THEORETIC INEQUALITIES [J].
DEMBO, A ;
COVER, TM ;
THOMAS, JA .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1991, 37 (06) :1501-1518
[10]   Generalized hypervirial and Blanchard's recurrence relations for radial matrix elements [J].
Dong, SH ;
Chen, CY ;
Lozada-Cassou, M .
JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2005, 38 (13) :2211-2220