Reciprocal changes of CD44 and GAP-43 expression in the dentate gyrus inner molecular layer after status epilepticus in mice

被引:38
作者
Borges, K [1 ]
McDermott, DL [1 ]
Dingledine, R [1 ]
机构
[1] Emory Univ, Sch Med, Dept Pharmacol, Atlanta, GA 30322 USA
关键词
epilepsy; neuropeptide Y; neurodegeneration; hippocampus; mossy fiber sprouting; pilocarpine; kainate; dentate gyrus; growth-associated protein; seizure;
D O I
10.1016/j.expneurol.2004.03.019
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Mossy fiber sprouting (MFS), a common feature of human temporal lobe epilepsy and many epilepsy animal models, contributes to hippocampal hyperexcitability. The molecular events responsible for MFS are not well understood, although the growth-associated protein GAP-43 has been implicated in rats. Here, we focus on the hyaluronan receptor CD44, which is involved in routing of retinal axons during development and is upregulated after injury in many tissues including brain. After pilocarpine-induced status epilepticus (SE) in mice most hilar neurons died and neuropeptide Y (NPY) immunoreactivity appeared in the dentate inner molecular layer (IML) after 10-31 days indicative of MFS. Strong CD44 immumoreactivity appeared in the IML 3 days after pilocarpine, then declined over the next 4 weeks. Conversely, GAP-43 immunoreactivity was decreased in the IML at 3-10 days after pilocarpine-induced SE. After SE induced by repeated kainate injections, mice did not show any hilar cell loss or changes in CD44 or GAP-43 expression in the IML, and MFS was absent at 20-35 days. Thus, after SE in mice, early loss of GAP-43 and strong CD44 induction in the IML correlated with hilar cell loss and subsequent MFS. CD44 is one of the earliest proteins upregulated in the IML and coincides with early sprouting of mossy fibers, although its function is still unknown. We hypothesize that CD44 is involved in the response to axon terminal degeneration and/or neuronal reorganization preceding MFS. (C) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:1 / 10
页数:10
相关论文
共 66 条
[1]   SYNAPTIC REORGANIZATION BY MOSSY FIBERS IN HUMAN EPILEPTIC FASCIA-DENTATA [J].
BABB, TL ;
KUPFER, WR ;
PRETORIUS, JK ;
CRANDALL, PH ;
LEVESQUE, MF .
NEUROSCIENCE, 1991, 42 (02) :351-363
[3]   EXPRESSION OF GAP-43 IN THE GRANULE CELLS OF RAT HIPPOCAMPUS AFTER SEIZURE-INDUCED SPROUTING OF MOSSY FIBERS - IN-SITU HYBRIDIZATION AND IMMUNOCYTOCHEMICAL STUDIES [J].
BENDOTTI, C ;
PENDE, M ;
SAMANIN, R .
EUROPEAN JOURNAL OF NEUROSCIENCE, 1994, 6 (04) :509-515
[4]   Relationship between GAP-43 expression in the dentate gyrus and synaptic reorganization of hippocampal mossy fibres in rats treated with kainic acid [J].
Bendotti, C ;
Baldessari, S ;
Pende, M ;
Southgate, T ;
Guglielmetti, F ;
Samanin, R .
EUROPEAN JOURNAL OF NEUROSCIENCE, 1997, 9 (01) :93-101
[5]   Neuronal and glial pathological changes during epileptogenesis in the mouse pilocarpine model [J].
Borges, K ;
Gearing, M ;
McDermott, DL ;
Smith, AB ;
Almonte, AG ;
Wainer, BH ;
Dingledine, R .
EXPERIMENTAL NEUROLOGY, 2003, 182 (01) :21-34
[6]  
BORGES K, 2002, ABSTR SOC NEUR
[7]  
Buckmaster PS, 2002, J NEUROSCI, V22, P6650
[8]  
Cantallops I, 2000, HIPPOCAMPUS, V10, P269, DOI 10.1002/1098-1063(2000)10:3<269::AID-HIPO7>3.0.CO
[9]  
2-R
[10]  
Cantallops I, 1996, J COMP NEUROL, V366, P303