A consistent combined classification rule

被引:15
作者
Mojirsheibani, M [1 ]
机构
[1] CARLETON UNIV,DEPT MATH & STAT,OTTAWA,ON K1S 5B6,CANADA
关键词
classification rule; Bayes classifier; linear classifier; misclassification error rate; shatter coefficient; consistency;
D O I
10.1016/S0167-7152(97)00047-3
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this article we propose a data-based method for constructing combined classifiers. The resulting classifiers, which are linear in nature, turn out to be consistent. (C) 1997 Elsevier Science B.V.
引用
收藏
页码:43 / 47
页数:5
相关论文
共 8 条
[1]  
BREIMAN L, 1995, MACH LEARN, V24, P49
[3]  
Devroye L., 2013, A probabilistic theory of pattern recognition, V31
[4]  
Duda R. O., 1973, PATTERN CLASSIFICATI, V3
[5]   Combining estimates in regression and classification [J].
LeBlanc, M ;
Tibshirani, R .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1996, 91 (436) :1641-1650
[6]  
Pollard David, 2012, CONVERGENCE STOCHAST
[7]   CROSS-VALIDATORY CHOICE AND ASSESSMENT OF STATISTICAL PREDICTIONS [J].
STONE, M .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1974, 36 (02) :111-147
[8]   STACKED GENERALIZATION [J].
WOLPERT, DH .
NEURAL NETWORKS, 1992, 5 (02) :241-259