Carotenogenesis in the green alga Haematococcus pluvialis:: Cellular physiology and stress response

被引:193
作者
Boussiba, S [1 ]
机构
[1] Ben Gurion Univ Negev, Jacob Blaustein Inst Desert Res, Microalgal Biotechnol Lab, Albert Katz Dept Dryland Biotechnol, IL-84990 Sede Boqer, Israel
关键词
D O I
10.1034/j.1399-3054.2000.108002111.x
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
The unicellular green alga Haematococcus pluvialis Flotow has recently aroused considerable interest due to its capacity to amass large amounts of the ketocarotenoid astaxanthin (3,3'-dihydroxy-beta,beta-carotene-4,4'-dione), widely used commercially to color flesh of salmon, Astaxanthin accumulation in Haematococcus is induced by a variety of environmental stresses which limit cell growth in the presence of light, This is accompanied by a remarkable morphological and biochemical 'transformation' from green motile cells into inert red cysts. In recent years we have studied this transformation process from several aspects: defining conditions governing pigment accumulation, working out the biosynthetic pathway of astaxanthin accumulation and questioning the possible function of this secondary ketocarotenoid in protecting Haematococcus cells against oxidative damage. Our results suggest that astaxanthin synthesis proceeds via cantaxanthin and that this exceptional stress response is mediated by reactive oxygen species (ROS) through a mechanism which is not yet understood. The results do not support in vivo chemical quenching of ROS by the pigment, although in vitro it was shown to quench radicals very efficiently. The finding that most of the pigment produced is esterified and deposited in lipid globules outside the chloroplast further supports this assumption. We have suggested that astaxanthin is the by-product of a defense mechanism rather than the defending substance itself, although at this stage one cannot rule out other protective mechanisms. Further work is required for complete understanding of this transformation process. It is suggested that Haematococcus may serve as a simple model system to study response to oxidative stress and mechanisms evolved to cope with this harmful situation.
引用
收藏
页码:111 / 117
页数:7
相关论文
共 55 条
[1]  
Aflalo C, 1999, Z NATURFORSCH C, V54, P49
[2]   DISSECTION OF OXIDATIVE STRESS TOLERANCE USING TRANSGENIC PLANTS [J].
ALLEN, RD .
PLANT PHYSIOLOGY, 1995, 107 (04) :1049-1054
[3]  
Alscher RG, 1997, PHYSIOL PLANTARUM, V100, P224, DOI 10.1034/j.1399-3054.1997.1000203.x
[4]   ACTIVATION OF RAT-LIVER MICROSOMAL GLUTATHIONE-S-TRANSFERASE BY HYDROGEN-PEROXIDE - ROLE FOR PROTEIN-DIMER FORMATION [J].
ANIYA, Y ;
ANDERS, MW .
ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 1992, 296 (02) :611-616
[5]  
Asada K., 1994, Causes of photooxidative stress and amelioration of defense systems in plants., P77
[6]   MODE OF ACTION OF THE MASSIVELY ACCUMULATED BETA-CAROTENE OF DUNALIELLA-BARDAWIL IN PROTECTING THE ALGA AGAINST DAMAGE BY EXCESS IRRADIATION [J].
BENAMOTZ, A ;
SHAISH, A ;
AVRON, M .
PLANT PHYSIOLOGY, 1989, 91 (03) :1040-1043
[7]   ACCUMULATION OF BETA-CAROTENE IN HALOTOLERANT ALGAE - PURIFICATION AND CHARACTERIZATION OF BETA-CAROTENE-RICH GLOBULES FROM DUNALIELLA-BARDAWIL (CHLOROPHYCEAE) [J].
BENAMOTZ, A ;
KATZ, A ;
AVRON, M .
JOURNAL OF PHYCOLOGY, 1982, 18 (04) :529-537
[8]   CULTURE OF THE ASTAXANTHIN-PRODUCING GREEN-ALGA HAEMATOCOCCUS-PLUVIALIS .1. EFFECTS OF NUTRIENTS ON GROWTH AND CELL TYPE [J].
BOROWITZKA, MA ;
HUISMAN, JM ;
OSBORN, A .
JOURNAL OF APPLIED PHYCOLOGY, 1991, 3 (04) :295-304
[9]   Changes in pigments profile in the green alga Haeamtococcus pluvialis exposed to environmental stresses [J].
Boussiba, S ;
Bing, W ;
Yuan, JP ;
Zarka, A ;
Chen, F .
BIOTECHNOLOGY LETTERS, 1999, 21 (07) :601-604
[10]   ASTAXANTHIN ACCUMULATION IN THE GREEN-ALGA HAEMATOCOCCUS-PLUVIALIS [J].
BOUSSIBA, S ;
VONSHAK, A .
PLANT AND CELL PHYSIOLOGY, 1991, 32 (07) :1077-1082