Multifractal properties of the random resistor network

被引:13
作者
Barthélémy, M
Buldyrev, SV
Havlin, S
Stanley, HE
机构
[1] Boston Univ, Ctr Polymer Studies, Boston, MA 02215 USA
[2] Boston Univ, Dept Phys, Boston, MA 02215 USA
[3] Bar Ilan Univ, Dept Phys, IL-52900 Ramat Gan, Israel
[4] Bar Ilan Univ, Minerva Ctr, IL-52900 Ramat Gan, Israel
[5] CEA, Serv Phys Matiere Condensee, BIII, F-91680 Bruyeres Le Chatel, France
来源
PHYSICAL REVIEW E | 2000年 / 61卷 / 04期
关键词
D O I
10.1103/PhysRevE.61.R3283
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We study the multifractal spectrum of the current in the two-dimensional random resistor network at the percolation threshold. We consider two ways of applying the voltage difference: (i) two parallel bars, and (ii) two points. Our numerical results suggest that in the infinite system limit, the probability distribution behaves for small i as P(i)similar to 1/i, where i is the current. As a consequence, the moments of i of order q less than or equal to q(c)=0 do not exist and all currents of value below the most probable one have the fractal dimension of the backbone. The backbone can thus be described in terms of only (i) blobs of fractal dimension d(B) and (ii) high current carrying bonds of fractal dimension going from 1/v to d(B).
引用
收藏
页码:R3283 / R3286
页数:4
相关论文
共 20 条
[1]   DISTRIBUTION OF THE LOGARITHMS OF CURRENTS IN PERCOLATING RESISTOR NETWORKS .1. THEORY [J].
AHARONY, A ;
BLUMENFELD, R ;
HARRIS, AB .
PHYSICAL REVIEW B, 1993, 47 (10) :5756-5769
[2]   Scaling for the critical percolation backbone [J].
Barthélémy, M ;
Buldyrev, SV ;
Havlin, S ;
Stanley, HE .
PHYSICAL REVIEW E, 1999, 60 (02) :R1123-R1125
[3]   NEGATIVE MOMENTS OF THE CURRENT SPECTRUM IN THE RANDOM-RESISTOR NETWORK [J].
BATROUNI, GG ;
HANSEN, A ;
ROUX, S .
PHYSICAL REVIEW A, 1988, 38 (07) :3820-3823
[4]   PHYSICAL-PROPERTIES OF MACROSCOPICALLY INHOMOGENEOUS-MEDIA [J].
BERGMAN, DJ ;
STROUD, D .
SOLID STATE PHYSICS: ADVANCES IN RESEARCH AND APPLICATIONS, VOL 46, 1992, 46 :147-269
[5]   CLUSTER STRUCTURE NEAR THE PERCOLATION-THRESHOLD [J].
CONIGLIO, A .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1982, 15 (12) :3829-3844
[6]   MULTISCALING AND MULTIFRACTALITY [J].
CONIGLIO, A ;
ZANNETTI, M .
PHYSICA D, 1989, 38 (1-3) :37-40
[7]   ANOMALOUS VOLTAGE DISTRIBUTION OF RANDOM RESISTOR NETWORKS AND A NEW MODEL FOR THE BACKBONE AT THE PERCOLATION-THRESHOLD [J].
DE ARCANGELIS, L ;
REDNER, S ;
CONIGLIO, A .
PHYSICAL REVIEW B, 1985, 31 (07) :4725-4727
[8]   MULTIFRACTAL STRUCTURE OF THE INCIPIENT INFINITE PERCOLATING CLUSTER [J].
DE ARCANGELIS, L ;
CONIGLIO, A ;
REDNER, S .
PHYSICAL REVIEW B, 1987, 36 (10) :5631-5634
[9]   MULTISCALING APPROACH IN RANDOM RESISTOR AND RANDOM SUPERCONDUCTING NETWORKS [J].
DE ARCANGELIS, L ;
REDNER, S ;
CONIGLIO, A .
PHYSICAL REVIEW B, 1986, 34 (07) :4656-4673
[10]   ANOMALIES IN THE MULTIFRACTAL ANALYSIS OF SELF-SIMILAR RESISTOR NETWORKS [J].
FOURCADE, B ;
TREMBLAY, AMS .
PHYSICAL REVIEW A, 1987, 36 (05) :2352-2358