Task-specific deactivation patterns in functional magnetic resonance imaging

被引:59
作者
Hutchinson, M
Schiffer, W
Joseffer, S
Liu, A
Schlosser, R
Dikshit, S
Goldberg, E
Brodie, JD
机构
[1] NYU, Sch Med, Dept Neurol, New York, NY 10016 USA
[2] NYU, Sch Med, Dept Radiol, New York, NY 10016 USA
[3] NYU, Sch Med, Dept Psychiat, New York, NY 10016 USA
关键词
functional MRI; deactivation; retrieval; baseline; silent counting;
D O I
10.1016/S0730-725X(99)00093-4
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
In general, image analysis of cognitive experiments using functional magnetic resonance imaging techniques has emphasized those regions of the brain where increases in signal intensity, with regard to the reference state, are associated with activation. Nevertheless, a number of recent papers have shown that there are areas of deactivation as well. In this study, we have used a univariate analysis and echo-planar functional magnetic resonance imaging to address the relationship of the reference state to the deactivations. We employed two dichotomous covert tasks, orthographic lexical retrieval and pure visual retrieval, to contrast with the reference state (baseline) of silent counting. Our analysis yielded extensive, task-specific landscapes of regional incremental and decremental responses, We have specifically demonstrated that the decremental responses are not due to activation in the reference state. We have also demonstrated that they are not an artifact of a specific part of the image analysis, and propose that they represent a physiological, task specific signal that should be considered an integral component of neural networks representing brain function. (C) 1999 Elsevier Science Inc.
引用
收藏
页码:1427 / 1436
页数:10
相关论文
共 28 条
[1]   Neural components of topographical representation [J].
Aguirre, GK ;
Zarahn, E ;
D'Esposito, M .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (03) :839-846
[2]  
Aguirre GK, 1997, J NEUROSCI, V17, P2512
[3]   The parahippocampus subserves topographical learning in man [J].
Aguirre, GK ;
Detre, JA ;
Alsop, DC ;
DEsposito, M .
CEREBRAL CORTEX, 1996, 6 (06) :823-829
[4]   FUNCTIONAL CONNECTIVITY IN THE MOTOR CORTEX OF RESTING HUMAN BRAIN USING ECHO-PLANAR MRI [J].
BISWAL, B ;
YETKIN, FZ ;
HAUGHTON, VM ;
HYDE, JS .
MAGNETIC RESONANCE IN MEDICINE, 1995, 34 (04) :537-541
[5]  
Biswal BB, 1997, NMR BIOMED, V10, P165, DOI 10.1002/(SICI)1099-1492(199706/08)10:4/5<165::AID-NBM454>3.0.CO
[6]  
2-7
[7]   Modulation of connectivity in visual pathways by attention: Cortical interactions evaluated with structural equation modelling and fMRI [J].
Buchel, C ;
Friston, KJ .
CEREBRAL CORTEX, 1997, 7 (08) :768-778
[8]  
Fiez JA, 1996, J NEUROSCI, V16, P808
[9]  
Friston K. J., 1995, HUMAN BRAIN MAPPING, V2, P189, DOI [10.1002/hbm.460020402, DOI 10.1002/HBM.460020402]
[10]   INVESTIGATING A NETWORK MODEL OF WORD GENERATION WITH POSITRON EMISSION TOMOGRAPHY [J].
FRISTON, KJ ;
FRITH, CD ;
LIDDLE, PF ;
FRACKOWIAK, RSJ .
PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 1991, 244 (1310) :101-106