Oxidative damage-induced PCNA complex formation is efficient in xeroderma pigmentosum group A but reduced in Cockayne syndrome group B cells

被引:39
作者
Balajee, AS [1 ]
Dianova, I [1 ]
Bohr, VA [1 ]
机构
[1] NIA, Mol Genet Lab, NIH, Baltimore, MD 21224 USA
关键词
D O I
10.1093/nar/27.22.4476
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Proliferating cell nuclear antigen (PCNA), a processivity factor for DNA polymerases delta and epsilon, is essential for both DNA replication and repair. PCNA is required in the resynthesis step of nucleotide excision repair (NER). After UV irradiation, PCNA translocates into an insoluble protein complex, most likely associated with the nuclear matrix. It has not previously been investigated in vivo whether PCNA complex formation also takes place after oxidative stress. in this study, we have examined the involvement of PCNA in the repair of oxidative DNA damage. PCNA complex formation was studied in normal human cells after treatment with hydrogen peroxide, which generates a variety of oxidative DNA lesions. PCNA was detected by two assays, immunofluorescence and western blot analyses. We observed that PCNA redistributes from a soluble to a DNA-bound form during the repair of oxidative DNA damage. PCNA complex formation was analyzed in two human natural mutant cell lines defective in DNA repair: xeroderma pigmentosum group A (XP-A) and Cockayne syndrome group B (CS-B). XP-A cells are defective in overall genome NER while CS-B cells are defective only in the preferential repair of active genes. Immunofluorescent detection of PCNA complex formation was similar in normal and XP-A cells, but was reduced in CS-B cells. Consistent with this observation, western blot analysis in CS-B cells showed a reduction in the ratio of PCNA relocated as compared to normal and XP-A cells. The efficient PCNA complex formation observed in XP-A cells following oxidative damage suggests that formation of PCNA-dependent repair foci may not require the XPA gene product. The reduced PCNA complex formation observed in CS-B cells suggests that these cells are defective in the processing of oxidative DNA damage.
引用
收藏
页码:4476 / 4482
页数:7
相关论文
共 43 条
[1]   DETECTION OF NUCLEOTIDE EXCISION-REPAIR INCISIONS IN HUMAN FIBROBLASTS BY IMMUNOSTAINING FOR PCNA [J].
ABOUSSEKHRA, A ;
WOOD, RD .
EXPERIMENTAL CELL RESEARCH, 1995, 221 (02) :326-332
[2]   MAMMALIAN DNA NUCLEOTIDE EXCISION-REPAIR RECONSTITUTED WITH PURIFIED PROTEIN-COMPONENTS [J].
ABOUSSEKHRA, A ;
BIGGERSTAFF, M ;
SHIVJI, MKK ;
VILPO, JA ;
MONCOLLIN, V ;
PODUST, VN ;
PROTIC, M ;
HUBSCHER, U ;
EGLY, JM ;
WOOD, RD .
CELL, 1995, 80 (06) :859-868
[3]   Efficient PCNA complex formation is dependent upon both transcription coupled repair and genome overall repair [J].
Balajee, AS ;
May, A ;
Dianova, I ;
Bohr, VA .
MUTATION RESEARCH-DNA REPAIR, 1998, 409 (03) :135-146
[4]   EXISTENCE OF 2 POPULATIONS OF CYCLIN PROLIFERATING CELL NUCLEAR ANTIGEN DURING THE CELL-CYCLE - ASSOCIATION WITH DNA-REPLICATION SITES [J].
BRAVO, R ;
MACDONALDBRAVO, H .
JOURNAL OF CELL BIOLOGY, 1987, 105 (04) :1549-1554
[5]   RETRACTED: Defective transcription-coupled repair of oxidative base damage in Cockayne syndrome patients from XP group G (Retracted Article. See vol 308, pg 1740, 2005) [J].
Cooper, PK ;
Nouspikel, T ;
Clarkson, SG ;
Leadon, SA .
SCIENCE, 1997, 275 (5302) :990-993
[6]   Repair of 8-oxoguanine in DNA is deficient in Cockayne syndrome group B cells [J].
Dianov, G ;
Bischoff, C ;
Sunesen, M ;
Bohr, VA .
NUCLEIC ACIDS RESEARCH, 1999, 27 (05) :1365-1368
[7]   The influence of cell growth, detoxifying enzymes and DNA repair on hydrogen peroxide-mediated DNA damage (measured using the comet assay) in human cells [J].
Duthie, SJ ;
Collins, AR .
FREE RADICAL BIOLOGY AND MEDICINE, 1997, 22 (04) :717-724
[8]   CDK-INTERACTING PROTEIN-1 DIRECTLY BINDS WITH PROLIFERATING CELL NUCLEAR ANTIGEN AND INHIBITS DNA-REPLICATION CATALYZED BY THE DNA-POLYMERASE-DELTA HOLOENZYME [J].
FLORESROZAS, H ;
KELMAN, Z ;
DEAN, FB ;
PAN, ZQ ;
HARPER, PW ;
ELLEDGE, SJ ;
ODONNELL, M ;
HURWITZ, J .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1994, 91 (18) :8655-8659
[9]   Different DNA polymerases are involved in the short- and long-patch base excision repair in mammalian cells [J].
Fortini, P ;
Pascucci, B ;
Parlanti, E ;
Sobol, RW ;
Wilson, SH ;
Dogliotti, E .
BIOCHEMISTRY, 1998, 37 (11) :3575-3580
[10]   Proliferating cell nuclear antigen facilitates excision in long-patch base excision repair [J].
Gary, R ;
Kim, K ;
Cornelius, HL ;
Park, MS ;
Matsumoto, Y .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (07) :4354-4363