Although glial GABA uptake and release have been studied in vitro, GABA transporters (GATs) have not been characterized in glia in slices. Whole cell patch-clamp recordings were obtained from Bergmann glia in rat cerebellar slices to characterize carrier-mediated GABA influx and efflux. GABA induced inward currents at -70 mV that could be pharmacologically separated into GABA(A) receptor and GAT currents. In the presence of GABA(A/B/C) receptor blockers, mean GABA-induced currents measured -48 pA at -70 mV, were inwardly rectifying between -70 and +50 mV, were inhibited by external Na+ removal, and were diminished by reduction of external Cl-. Nontransportable blockers of GAT-1 (SKF89976-A and NNC-711) and a transportable blocker of all the GAT subtypes (nipecotic acid) reversibly reduced GABA-induced transport currents by 68 and 100%, respectively. A blocker of BGT-1 (betaine) had no effect. SKF89976-A and NNC-711 also suppressed baseline inward currents that likely result from tonic GAT activation by background GABA. The substrate agonists, nipecotic acid and beta-alanine but not betaine, induced voltage- and Na+-dependent currents. With Na+ and GABA inside the patch pipette or intracellular GABA perfusion during the recording, SKF89976-A blocked baseline outward currents that activated at -60 mV and increased with more depolarized potentials. This carrier-mediated GABA efflux induced a local accumulation of extracellular GABA detected by GABAA receptor activation on the recorded cell. Overall, these results indicate that Bergmann glia express GAT-1 that are activated by ambient GABA. In addition, GAT-1 in glia can work in reverse and release sufficient GABA to activate nearby GABA receptors.