On one mechanism of transition to chaos in lattice dynamical systems

被引:10
作者
Bunimovich, LA [1 ]
Venkatagiri, S [1 ]
机构
[1] GEORGIA INST TECHNOL,SCH MATH,ATLANTA,GA 30332
来源
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS | 1997年 / 290卷 / 1-2期
基金
美国国家科学基金会;
关键词
D O I
10.1016/S0370-1573(97)00060-4
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This paper extends some results obtained earlier for coupled map lattices to the more general lattice dynamical systems. A transition to chaos in the lattice dynamics occurs when the strength of spatial interactions exceeds some threshold. This transition is generated by the peak-crossing bifurcation. It is shown that this mechanism can generate chaotic motion even in lattice dynamical systems with extremely simple local dynamics. The resulting regime of chaos is characterized by a space intermittency when the lattice is partitioned into alternating clusters that move chaotically and quasiregularly, respectively.
引用
收藏
页码:81 / 100
页数:20
相关论文
共 14 条
[1]   High temperature expansions and dynamical systems [J].
Bricmont, J ;
Kupiainen, A .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1996, 178 (03) :703-732
[2]   COUPLED ANALYTIC-MAPS [J].
BRICMONT, J ;
KUPIAINEN, A .
NONLINEARITY, 1995, 8 (03) :379-396
[3]   Coupled trivial maps [J].
Bunimovich, L. A. ;
Livi, R. ;
Martinez-Mekler, G. ;
Ruffo, S. .
CHAOS, 1992, 2 (03) :283-291
[4]   Spacetime chaos in coupled map lattices [J].
Bunimovich, L. A. ;
Sinai, Ya G. .
NONLINEARITY, 1988, 1 (04) :491-516
[5]   COUPLED MAP LATTICES - ONE-STEP FORWARD AND 2 STEPS BACK [J].
BUNIMOVICH, LA .
PHYSICA D, 1995, 86 (1-2) :248-255
[6]   Onset of chaos in coupled map lattices via the peak-crossing bifurcation [J].
Bunimovich, LA ;
Venkatagiri, S .
NONLINEARITY, 1996, 9 (05) :1281-1298
[7]   ROADS TO TURBULENCE IN DISSIPATIVE DYNAMICAL-SYSTEMS [J].
ECKMANN, JP .
REVIEWS OF MODERN PHYSICS, 1981, 53 (04) :643-654
[8]   ERGODIC-THEORY OF CHAOS AND STRANGE ATTRACTORS [J].
ECKMANN, JP ;
RUELLE, D .
REVIEWS OF MODERN PHYSICS, 1985, 57 (03) :617-656
[9]  
HUERRE P, 1989, NEW TRENDS NONLINEAR
[10]   EQUILIBRIUM STATES FOR LATTICE MODELS OF HYPERBOLIC TYPE [J].
JIANG, MH .
NONLINEARITY, 1995, 8 (05) :631-659