Performance of superconvergent perturbation theory

被引:26
作者
Weniger, EJ
机构
[1] Institut für Physikalische und Theoretische Chemie, Universität Regensburg, Regensburg
来源
PHYSICAL REVIEW A | 1997年 / 56卷 / 06期
关键词
D O I
10.1103/PhysRevA.56.5165
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The performance of the so-called superconvergent perturbation theory [W. Scherer, Phys. Rev. Lett. 74, 1495 (1995)] is investigated numerically in the case of the ground-state energy of a quartic anharmonic oscillator. It is shown that Scherer's superconvergent approximation, which is rational in the coupling constant beta, gives in the case of small coupling constants somewhat better results than the strongly divergent but asymptotic Rayleigh-Schrodinger perturbation series if it is truncated at the same order in beta. However, the transformation of this truncated perturbation series into Pade approximants or into another class of rational functions by means of the sequence transformation delta(k)((n))(zeta,s(n)) [E. J. Weniger, Comput. Phys. Rep. 10, 189 (1989)] yields much more powerful rational approximants. Moreover, the performance of the superconvergent approximation can be improved considerably by Wynn's epsilon algorithm [P. Wynn, Math. Tables Aids Comput. 10, 91 (1956)] or by delta(k)((n))(zeta,s(n)). Finally, it is shown that the other rational approximants provide much better approximations to higher order terms of the Rayleigh-Schrodinger perturbation series than Scherer's superconvergent approximation. [S1050-2947(97)02112-4].
引用
收藏
页码:5165 / 5168
页数:4
相关论文
共 27 条
[1]  
[Anonymous], 1992, NUMER ALGORITHMS, DOI DOI 10.1007/BF02141954
[2]  
Baker G. A. Jr., 1996, PADE APPROXIMANTS 1 PADE APPROXIMANTS 1, V2nd
[3]   LARGE-ORDER BEHAVIOR OF PERTURBATION THEORY [J].
BENDER, CM ;
WU, TS .
PHYSICAL REVIEW LETTERS, 1971, 27 (07) :461-&
[4]   ANHARMONIC OSCILLATOR .2. STUDY OF PERTURBATION-THEORY IN LARGE ORDER [J].
BENDER, CM ;
WU, TT .
PHYSICAL REVIEW D, 1973, 7 (06) :1620-1636
[5]   ANHARMONIC OSCILLATOR [J].
BENDER, CM ;
WU, TT .
PHYSICAL REVIEW, 1969, 184 (05) :1231-&
[6]   PREDICTION PROPERTIES OF SOME EXTRAPOLATION METHODS [J].
BREZINSKI, C .
APPLIED NUMERICAL MATHEMATICS, 1985, 1 (06) :457-462
[7]  
Brezinski C., 1991, Extrapolation Methods, Theory and Practice, DOI DOI 10.1016/B978-0-444-88814-3.50004-0
[8]  
GILEWICZ J, 1973, PADE APPROXIMANTS TH, P99
[9]   ON REMAINDER-ESTIMATES FOR LEVIN-TYPE SEQUENCE TRANSFORMATIONS [J].
HOMEIER, HHH ;
WENIGER, EJ .
COMPUTER PHYSICS COMMUNICATIONS, 1995, 92 (01) :1-10
[10]   Rational approximants using Levin-Weniger transforms [J].
Roy, D ;
Bhattacharya, R ;
Bhowmick, S .
COMPUTER PHYSICS COMMUNICATIONS, 1996, 93 (2-3) :159-178