Hydrogen sensors based on conductivity changes in polyaniline nanofibers

被引:209
作者
Virji, Shabnam
Kaner, Richard B.
Weiller, Bruce H.
机构
[1] Aerosp Corp, Mat Proc & Evaluat Dept, Los Angeles, CA 90009 USA
[2] Univ Calif Los Angeles, Dept Chem & Biochem, Los Angeles, CA 90095 USA
[3] Univ Calif Los Angeles, Calif NanoSyst Inst, Los Angeles, CA 90095 USA
关键词
D O I
10.1021/jp063166g
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Hydrogen causes a reversible decrease in the resistance of a thin film of camphorsulfonic acid doped polyaniline nanofibers. For a 1% mixture of hydrogen in nitrogen, a 3% decrease in resistance is observed (Delta R/R = - 3%). The hydrogen response is completely suppressed in the presence of humidity. In contrast, oxygen does not inhibit the hydrogen response. A deuterium isotope effect on the sensor response is observed in which hydrogen gives a larger response than deuterium: (Delta R/R)(H)/(Delta R/R)(D) = 4.1 +/- 0.4. Mass sensors using nanofiber films on a quartz crystal microbalance also showed a comparable deuterium isotope effect: Delta m(H)/Delta m(D) = 2.3 +/- 0.2 or Delta n(H)/Delta n(D) = 4.6 +/- 0.4 on a molar basis. The resistance change of polyaniline nanofibers is about an order of magnitude greater than conventional polyaniline, consistent with a porous, high-surface-area nanofibrillar film structure that allows for better gas diffusion into the film. A plausible mechanism involves hydrogen bonding to the amine nitrogens along the polyaniline backbone and subsequent dissociation. The inhibitory effect of humidity is consistent with a stronger interaction of water with the polyaniline active sites that bind to hydrogen. These data clearly demonstrate a significant interaction of hydrogen with doped polyaniline and may be relevant to recent claims of hydrogen storage by polyaniline.
引用
收藏
页码:22266 / 22270
页数:5
相关论文
共 25 条
[1]   POLYANILINE - PROCESSABILITY FROM AQUEOUS-SOLUTIONS AND EFFECT OF WATER-VAPOR ON CONDUCTIVITY [J].
ANGELOPOULOS, M ;
RAY, A ;
MACDIARMID, AG ;
EPSTEIN, AJ .
SYNTHETIC METALS, 1987, 21 (01) :21-30
[2]  
Cho S. J., 2002, AM CHEM SOC DIV FUEL, V47, p790?791
[3]   Development and calibration of field-effect transistor-based sensor array for measurement of hydrogen and ammonia gas mixtures in humid air [J].
Domansky, K ;
Baldwin, DL ;
Grate, JW ;
Hall, TB ;
Li, J ;
Josowicz, M ;
Janata, J .
ANALYTICAL CHEMISTRY, 1998, 70 (03) :473-481
[4]   Conductive polymer films as ultrasensitive chemical sensors for hydrazine and monomethylhydrazine vapor [J].
Ellis, DL ;
Zakin, MR ;
Bernstein, LS ;
Rubner, MF .
ANALYTICAL CHEMISTRY, 1996, 68 (05) :817-822
[5]   Nanostructured polyaniline sensors [J].
Huang, J ;
Virji, S ;
Weiller, BH ;
Kaner, RB .
CHEMISTRY-A EUROPEAN JOURNAL, 2004, 10 (06) :1314-1319
[6]  
Huang J., 2006, ANGEW CHEM, P367, DOI [DOI 10.1002/ANGE.200460616, DOI 10.1002/ange.200460616]
[7]   Nanofiber formation in the chemical polymerization of aniline: A mechanistic study [J].
Huang, JX ;
Kaner, RB .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2004, 43 (43) :5817-5821
[8]   Polyaniline nanofibers: Facile synthesis and chemical sensors [J].
Huang, JX ;
Virji, S ;
Weiller, BH ;
Kaner, RB .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2003, 125 (02) :314-315
[9]   A general chemical route to polyaniline nanofibers [J].
Huang, JX ;
Kaner, RB .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2004, 126 (03) :851-855
[10]   POLYANILINE, A NOVEL CONDUCTING POLYMER - MORPHOLOGY AND CHEMISTRY OF ITS OXIDATION AND REDUCTION IN AQUEOUS-ELECTROLYTES [J].
HUANG, WS ;
HUMPHREY, BD ;
MACDIARMID, AG .
JOURNAL OF THE CHEMICAL SOCIETY-FARADAY TRANSACTIONS I, 1986, 82 :2385-&