Practical method for determining the minimum embedding dimension of a scalar time series

被引:1281
作者
Cao, LY
机构
[1] Department of Mathematics, University of Western Australia, Nedlands
来源
PHYSICA D | 1997年 / 110卷 / 1-2期
关键词
D O I
10.1016/S0167-2789(97)00118-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A practical method is proposed to determine the minimum embedding dimension from a scalar time series. It has the following advantages: (1) does not contain any subjective parameters except for the time-delay for the embedding; (2) does not strongly depend on how many data points are available; (3) can clearly distinguish deterministic signals from stochastic signals; (4) works well for time series from high-dimensional attractors; (5) is computationally efficient. Several time series are tested to show the above advantages of the method.
引用
收藏
页码:43 / 50
页数:8
相关论文
共 23 条
[1]   THE ANALYSIS OF OBSERVED CHAOTIC DATA IN PHYSICAL SYSTEMS [J].
ABARBANEL, HDI ;
BROWN, R ;
SIDOROWICH, JJ ;
TSIMRING, LS .
REVIEWS OF MODERN PHYSICS, 1993, 65 (04) :1331-1392
[2]   SINGULAR-VALUE DECOMPOSITION AND THE GRASSBERGER-PROCACCIA ALGORITHM [J].
ALBANO, AM ;
MUENCH, J ;
SCHWARTZ, C ;
MEES, AI ;
RAPP, PE .
PHYSICAL REVIEW A, 1988, 38 (06) :3017-3026
[3]  
[Anonymous], 1994, COPING CHAOS
[4]  
[Anonymous], 2018, TIME SERIES PREDICTI
[5]   EXTRACTING QUALITATIVE DYNAMICS FROM EXPERIMENTAL-DATA [J].
BROOMHEAD, DS ;
KING, GP .
PHYSICA D, 1986, 20 (2-3) :217-236
[6]   NONLINEAR PREDICTION OF CHAOTIC TIME-SERIES [J].
CASDAGLI, M .
PHYSICA D, 1989, 35 (03) :335-356
[7]   ESTIMATING CORRELATION DIMENSION FROM A CHAOTIC TIME-SERIES - WHEN DOES PLATEAU ONSET OCCUR [J].
DING, MZ ;
GREBOGI, C ;
OTT, E ;
SAUER, T ;
YORKE, JA .
PHYSICA D, 1993, 69 (3-4) :404-424
[8]   ERGODIC-THEORY OF CHAOS AND STRANGE ATTRACTORS [J].
ECKMANN, JP ;
RUELLE, D .
REVIEWS OF MODERN PHYSICS, 1985, 57 (03) :617-656
[9]  
FARMER JD, 1982, PHYSICA D, V4, P366, DOI 10.1016/0167-2789(82)90042-2
[10]   INDEPENDENT COORDINATES FOR STRANGE ATTRACTORS FROM MUTUAL INFORMATION [J].
FRASER, AM ;
SWINNEY, HL .
PHYSICAL REVIEW A, 1986, 33 (02) :1134-1140