Complexity measures from interaction structures

被引:24
作者
Kahle, T. [1 ]
Olbrich, E. [1 ]
Jost, J. [1 ,2 ]
Ay, N. [1 ,2 ]
机构
[1] Max Planck Inst Math Sci, D-04103 Leipzig, Germany
[2] Santa Fe Inst, Santa Fe, NM 87501 USA
来源
PHYSICAL REVIEW E | 2009年 / 79卷 / 02期
关键词
cellular automata; information theory; network theory (graphs); nonlinear dynamical systems; statistics; GEOMETRY;
D O I
10.1103/PhysRevE.79.026201
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We evaluate information-theoretic quantities that quantify complexity in terms of kth-order statistical dependences that cannot be reduced to interactions among k-1 random variables. Using symbolic dynamics of coupled maps and cellular automata as model systems, we demonstrate that these measures are able to identify complex dynamical regimes.
引用
收藏
页数:9
相关论文
共 26 条
[1]   Information geometry on hierarchy of probability distributions [J].
Amari, S .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2001, 47 (05) :1701-1711
[2]  
Amari S.-i., 2000, Methods of Information Geometry, V191, DOI DOI 10.1090/MMONO/191
[3]   Synchronized clusters in coupled map networks. II. Stability analysis [J].
Amritkar, RE ;
Jalan, S ;
Hu, CK .
PHYSICAL REVIEW E, 2005, 72 (01)
[4]  
[Anonymous], 1968, INFORM THEORY STAT
[5]  
[Anonymous], 2004, INFORM THEORY STAT T
[6]  
Ay N., 2006, 0608028 SANT FE I
[7]  
Ay N, 2006, KYBERNETIKA, V42, P517
[8]   Information closure of exponential families and generalized maximum likelihood estimates [J].
Csiszár, I ;
Matús, F .
ISIT: 2002 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, PROCEEDINGS, 2002, :434-434
[9]   I-DIVERGENCE GEOMETRY OF PROBABILITY DISTRIBUTIONS AND MINIMIZATION PROBLEMS [J].
CSISZAR, I .
ANNALS OF PROBABILITY, 1975, 3 (01) :146-158
[10]   MARKOV-FIELDS AND LOG-LINEAR INTERACTION MODELS FOR CONTINGENCY-TABLES [J].
DARROCH, JN ;
LAURITZEN, SL ;
SPEED, TP .
ANNALS OF STATISTICS, 1980, 8 (03) :522-539