Mutational analysis of the D1/E1 core helices and the conserved N-terminal region of yeast transcription factor IIB (TFIIB): Identification of an N-terminal mutant that stabilizes TATA-binding protein-TFIIB-DNA complexes

被引:47
作者
Bangur, CS
Pardee, TS
Ponticelli, AS
机构
[1] SUNY BUFFALO,SCH MED & BIOMED SCI,DEPT BIOCHEM,BUFFALO,NY 14214
[2] SUNY BUFFALO,SCH MED & BIOMED SCI,CTR ADV MOL BIOL & IMMUNOL,BUFFALO,NY 14214
关键词
D O I
10.1128/MCB.17.12.6784
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The general transcription factor IIB (TFIIB) plays an essential role in transcription of protein-coding genes by RNA polymerase II. We have used site-directed mutagenesis to assess the role of conserved amino acids in several important regions of yeast TFIIB. These include residues in the highly conserved amino-terminal region and basic residues in the D1 and E1 core domain alpha-helices. Acidic substitutions of residues K190 (D1) and K201 (El) resulted in growth impairments in vivo, reduced basal transcriptional activity in vitro, and an inability to form stable TFIIB-TATA-binding protein-DNA (DB) complexes. Significantly, these mutants retained the ability to respond to acidic activators in vivo and to the Gal4-VP16 activator in vitro, supporting the view that these basic residues play a role in basal transcription. In addition, 14 single-amino-acid substitutions were introduced in the conserved amino-terminal region. Three of these mutants, the L50D, R64E, and R78L mutants, displayed altered growth properties in vivo and were compromised for supporting transcription in vitro. The L50D mutant was impaired for RNA polymerase II interaction, while the R64E mutant exhibited altered transcription start site selection both in vitro and in vivo and, surprisingly, was more active than the wild type in the formation of stable DB complexes. These results support the view that the amino-terminal domain is involved in the direct interaction between yeast TFIIB and RNA polymerase II and suggest that this domain may interact with DNA and/or modulate the formation of a DB complex.
引用
收藏
页码:6784 / 6793
页数:10
相关论文
共 44 条
[1]  
AIYAR A, 1993, BIOTECHNIQUES, V14, P366
[2]   TBP MUTANTS DEFECTIVE IN ACTIVATED TRANSCRIPTION IN-VIVO [J].
ARNDT, KM ;
RICUPEROHOVASSE, S ;
WINSTON, F .
EMBO JOURNAL, 1995, 14 (07) :1490-1497
[3]   SOLUTION STRUCTURE OF THE C-TERMINAL CORE DOMAIN OF HUMAN TFIIB - SIMILARITY TO CYCLIN-A AND INTERACTION WITH TATA-BINDING PROTEIN [J].
BAGBY, S ;
KIM, SJ ;
MALDONADO, E ;
TONG, KI ;
REINBERG, D ;
IKURA, M .
CELL, 1995, 82 (05) :857-867
[4]  
BANGUR C, UNPUB
[5]   THE SUA8 SUPPRESSORS OF SACCHAROMYCES-CEREVISIAE ENCODE REPLACEMENTS OF CONSERVED RESIDUES WITHIN THE LARGEST SUBUNIT OF RNA POLYMERASE-II AND AFFECT TRANSCRIPTION START SITE SELECTION SIMILARLY TO SUA7 (TFIIB) MUTATIONS [J].
BERROTERAN, RW ;
WARE, DE ;
HAMPSEY, M .
MOLECULAR AND CELLULAR BIOLOGY, 1994, 14 (01) :226-237
[6]  
BOEKE JD, 1987, METHOD ENZYMOL, V154, P164
[7]   FUNCTIONAL DOMAINS OF TRANSCRIPTION FACTOR-TFIIB [J].
BURATOWSKI, S ;
ZHOU, H .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1993, 90 (12) :5633-5637
[8]   5 INTERMEDIATE COMPLEXES IN TRANSCRIPTION INITIATION BY RNA POLYMERASE-II [J].
BURATOWSKI, S ;
HAHN, S ;
GUARENTE, L ;
SHARP, PA .
CELL, 1989, 56 (04) :549-561
[9]   A minimal set of RNA polymerase II transcription protein interactions [J].
Bushnell, DA ;
Bamdad, C ;
Kornberg, RD .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1996, 271 (33) :20170-20174
[10]   ACTIVATION OF YEAST POLYMERASE-II TRANSCRIPTION BY HERPESVIRUS VP16 AND GAL4 DERIVATIVES INVITRO [J].
CHASMAN, DI ;
LEATHERWOOD, J ;
CAREY, M ;
PTASHNE, M ;
KORNBERG, RD .
MOLECULAR AND CELLULAR BIOLOGY, 1989, 9 (11) :4746-4749