All-trans-Retinoic Acid Represses Obesity and Insulin Resistance by Activating both Peroxisome Proliferation-Activated Receptor β/δ and Retinoic Acid Receptor

被引:271
作者
Berry, Daniel C.
Noy, Noa [1 ]
机构
[1] Case Western Reserve Univ, Dept Pharmacol, Sch Med, Cleveland, OH 44106 USA
关键词
UNCOUPLING PROTEIN GENE; BINDING PROTEINS; PPAR-DELTA; GLUCOSE-METABOLISM; NUCLEAR RECEPTORS; ADIPOSE-TISSUE; EXPRESSION; ADIPOGENESIS; INHIBITION; DIFFERENTIATION;
D O I
10.1128/MCB.01742-08
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Many biological activities of all-trans-retinoic acid (RA) are mediated by the ligand-activated transcription factors termed retinoic acid receptors (RARs), but this hormone can also activate the nuclear receptor peroxisome proliferation-activated receptor beta/delta (PPAR beta/delta). We show here that adipocyte differentiation is accompanied by a shift in RA signaling which, in mature adipocytes, allows RA to activate both RARs and PPAR beta/delta, thereby enhancing lipolysis and depleting lipid stores. In vivo studies using a dietary-induced mouse model of obesity indicated that onset of obesity is accompanied by downregulation of adipose PPAR beta/delta expression and activity. RA treatment of obese mice induced expression of PPAR beta/delta and RAR target genes involved in regulation of lipid homeostasis, leading to weight loss and improved insulin responsiveness. RA treatment also restored adipose PPAR beta/delta expression. The data indicate that suppression of obesity and insulin resistance by RA is largely mediated by PPAR beta/delta and is further enhanced by activation of RARs. By targeting two nuclear receptors, RA may be a uniquely efficacious agent in the therapy and prevention of the metabolic syndrome.
引用
收藏
页码:3286 / 3296
页数:11
相关论文
共 46 条
[1]   A NOVEL REGULATORY PATHWAY OF BROWN FAT THERMOGENESIS - RETINOIC ACID IS A TRANSCRIPTIONAL ACTIVATOR OF THE MITOCHONDRIAL UNCOUPLING PROTEIN GENE [J].
ALVAREZ, R ;
DEANDRES, J ;
YUBERO, P ;
VINAS, O ;
MAMPEL, T ;
IGLESIAS, P ;
GIRALT, M ;
VILLARROYA, F .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (10) :5666-5673
[2]   Effects of peroxisome proliferator-activated receptor δ on placentation, adiposity, and colorectal cancer [J].
Barak, Y ;
Liao, D ;
He, WM ;
Ong, ES ;
Nelson, MC ;
Olefsky, JM ;
Boland, R ;
Evans, RM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (01) :303-308
[3]   PPARδ:: a dagger in the heart of the metabolic syndrome [J].
Barish, GD ;
Narkar, VA ;
Evans, RM .
JOURNAL OF CLINICAL INVESTIGATION, 2006, 116 (03) :590-597
[4]   Intracellular lipid-binding proteins and their genes [J].
Bernlohr, DA ;
Simpson, MA ;
Hertzel, AV ;
Banaszak, LJ .
ANNUAL REVIEW OF NUTRITION, 1997, 17 :277-303
[5]   Direct channeling of retinoic acid between cellular retinoic acid-binding protein II and retinoic acid receptor sensitizes mammary carcinoma cells to retinoic acid-induced growth arrest [J].
Budhu, AS ;
Noy, N .
MOLECULAR AND CELLULAR BIOLOGY, 2002, 22 (08) :2632-2641
[6]   Nuclear receptors PPARβ/δ and PPARα direct distinct metabolic regulatory programs in the mouse heart [J].
Burkart, Eileen M. ;
Sambandam, Nandakurnar ;
Han, Xianlin ;
Gross, Richard W. ;
Courtois, Michael ;
Gierasch, Carolyn M. ;
Shoghi, Kooresh ;
Welch, Michael J. ;
Kelly, Daniel P. .
JOURNAL OF CLINICAL INVESTIGATION, 2007, 117 (12) :3930-3939
[7]   A decade of molecular biology of retinoic acid receptors [J].
Chambon, P .
FASEB JOURNAL, 1996, 10 (09) :940-954
[8]   Peroxisome proliferator-activated receptors: Nuclear control of metabolism [J].
Desvergne, B ;
Wahli, W .
ENDOCRINE REVIEWS, 1999, 20 (05) :649-688
[9]   Antiapoptotic role of PPARβ in keratinocytes via transcriptional control of the Akt1 signaling pathway [J].
Di-Poï, N ;
Tan, NS ;
Michalik, L ;
Wahli, W ;
Desvergne, B .
MOLECULAR CELL, 2002, 10 (04) :721-733
[10]   Distinct roles for cellular retinoic acid-binding proteins I and II in regulating signaling by retinoic acid [J].
Dong, D ;
Ruuska, SE ;
Levinthal, DJ ;
Noy, N .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (34) :23695-23698