A short wavelength gigahertz clocked fiber-optic quantum key distribution system

被引:140
作者
Gordon, KJ [1 ]
Fernandez, V
Townsend, PD
Buller, GS
机构
[1] Heriot Watt Univ, Sch Engn & Phys Sci, Edinburgh EH14 4AS, Midlothian, Scotland
[2] Natl Univ Ireland Univ Coll Cork, Dept Phys, Photon Syst Grp, Cork, Ireland
基金
英国工程与自然科学研究理事会;
关键词
cryptography; data security; optical fiber communications; quantum cryptography; quantum key distribution;
D O I
10.1109/JQE.2004.830182
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A quantum key distribution (QKD) system has been developed, using a standard telecommunications optical fiber, which is capable of operating at clock rates of greater than 1 GHz. The QKD system implements a polarization encoded version of the B92 protocol. The system employs vertical-cavity surface-emitting lasers with emission wavelengths of 850 nm as weak coherent light sources, and silicon single photon avalanche diodes as the single photon detectors. A distributed feedback laser of emission wavelength 1.3 mum, and a linear gain germanium avalanche photodiode was used to optically synchronize individual photons over the standard telecommunications fiber. The QKD system exhibited a quantum bit error rate (QBER) of 1.4%, and an estimated net bit rate (NBR) greater than 100000 bits(-1), for a 4.2-km transmission range. For a 10-km fiber range, a QBER of 2.1%, and an estimated NBR of greater than 7000 bits(-1) was achieved.
引用
收藏
页码:900 / 908
页数:9
相关论文
共 31 条
[1]  
Bennett C.H., 1984, P IEEE INT C COMP SY, P175, DOI DOI 10.1016/J.TCS.2014.05.025
[2]   QUANTUM CRYPTOGRAPHY USING ANY 2 NONORTHOGONAL STATES [J].
BENNETT, CH .
PHYSICAL REVIEW LETTERS, 1992, 68 (21) :3121-3124
[3]   An autocompensating fiber-optic quantum cryptography system based on polarization splitting of light [J].
Bethune, DS ;
Risk, WP .
IEEE JOURNAL OF QUANTUM ELECTRONICS, 2000, 36 (03) :340-347
[4]   Daylight quantum key distribution over 1.6 km [J].
Buttler, WT ;
Hughes, RJ ;
Lamoreaux, SK ;
Morgan, GL ;
Nordholt, JE ;
Peterson, CG .
PHYSICAL REVIEW LETTERS, 2000, 84 (24) :5652-5655
[5]   Experimental demonstration of optimal unambiguous state discrimination [J].
Clarke, RBM ;
Chefles, A ;
Barnett, SM ;
Riis, E .
PHYSICAL REVIEW A, 2001, 63 (04) :1-4
[6]   PHOTON-COUNTING TECHNIQUES WITH SILICON AVALANCHE PHOTODIODES [J].
DAUTET, H ;
DESCHAMPS, P ;
DION, B ;
MACGREGOR, AD ;
MACSWEEN, D ;
MCINTYRE, RJ ;
TROTTIER, C ;
WEBB, PP .
APPLIED OPTICS, 1993, 32 (21) :3894-3900
[7]  
Félix S, 2001, J MOD OPTIC, V48, P2009, DOI 10.1080/09500340110076437
[8]   QUANTUM CRYPTOGRAPHY USING OPTICAL FIBERS [J].
FRANSON, JD ;
ILVES, H .
APPLIED OPTICS, 1994, 33 (14) :2949-2954
[9]   OPERATIONAL SYSTEM FOR QUANTUM CRYPTOGRAPHY [J].
FRANSON, JD ;
JACOBS, BC .
ELECTRONICS LETTERS, 1995, 31 (03) :232-234
[10]   High-rate quantum key distribution at short wavelength: performance analysis and evaluation of silicon single photon avalanche diodes [J].
Ghioni, M ;
Giuduce, A ;
Cova, S ;
Zappa, F .
JOURNAL OF MODERN OPTICS, 2003, 50 (14) :2251-2269