Sensing and repairing DNA double-strand breaks - Commentary

被引:889
作者
Jackson, SP
机构
[1] Wellcome Trust & Canc Res UK Inst Canc & Dev Biol, Cambridge CB2 1QR, England
[2] Univ Cambridge, Dept Zool, Cambridge CB2 3EJ, England
关键词
D O I
10.1093/carcin/23.5.687
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
The DNA double-strand break (DSB) is the principle cytotoxic lesion for ionizing radiation and radio-mimetic chemicals but can also be caused by mechanical stress on chromosomes or when a replicative DNA polymerase encounters a DNA single-strand break or other type of DNA lesion. DSBs also occur as intermediates in various biological events, such as V(D)J recombination in developing lymphoid cells. Inaccurate repair or lack of repair of a DSB can lead to mutations or to larger-scale genomic instability through the generation of dicentric or acentric chromosomal fragments. Such genome changes may have tumourigenic potential. In other instances, DSBs can be sufficient to induce apoptosis. Because of the threats posed by DSBs, eukaryotic cells have evolved complex and highly conserved systems to rapidly and efficiently detect these lesions, signal their presence and bring about their repair. Here, I provide an overview of these systems, with particular emphasis on the two major pathways of DSB repair: non-homologous end-joining and homologous recombination. Inherited or acquired defects in these pathways may lead to cancer or to other human diseases, and may affect the sensitivity of patients or tumour cells to radiotherapy and certain chemotherapies. An increased knowledge of DSB repair and of other DNA DSB responses may therefore provide opportunities for developing more effective treatments for cancer.
引用
收藏
页码:687 / 696
页数:10
相关论文
共 165 条
[1]   Cell cycle checkpoint signaling through the ATM and ATR kinases [J].
Abraham, RT .
GENES & DEVELOPMENT, 2001, 15 (17) :2177-2196
[2]   DNA ligase IV-deficient cells are more resistant to ionizing radiation in the absence of Ku70: Implications for DNA double-strand break repair [J].
Adachi, N ;
Ishino, T ;
Ishii, Y ;
Takeda, S ;
Koyama, H .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (21) :12109-12113
[3]  
Andegeko Y, 2001, J BIOL CHEM, V276, P38224
[4]  
Anderson CW, 2001, RADIAT RES, V156, P2, DOI 10.1667/0033-7587(2001)156[0002:FMIPTG]2.0.CO
[5]  
2
[6]   DNA double-strand break repair proteins are required to cap the ends of mammalian chromosomes [J].
Bailey, SM ;
Meyne, J ;
Chen, DJ ;
Kurimasa, A ;
Li, GC ;
Lehnert, BE ;
Goodwin, EH .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (26) :14899-14904
[7]   Chk2 kinase - A busy messenger [J].
Bartek, J ;
Falck, J ;
Lukas, J .
NATURE REVIEWS MOLECULAR CELL BIOLOGY, 2001, 2 (12) :877-886
[8]   DEFECTIVE DNA-DEPENDENT PROTEIN-KINASE ACTIVITY IS LINKED TO V(D)J RECOMBINATION AND DNA-REPAIR DEFECTS ASSOCIATED WITH THE MURINE SCID MUTATION [J].
BLUNT, T ;
FINNIE, NJ ;
TACCIOLI, GE ;
SMITH, GCM ;
DEMENGEOT, J ;
GOTTLIEB, TM ;
MIZUTA, R ;
VARGHESE, AJ ;
ALT, FW ;
JEGGO, PA ;
JACKSON, SP .
CELL, 1995, 80 (05) :813-823
[9]   BRCA1 is associated with a human SWI/SNF-related complex: Linking chromatin remodeling to breast cancer [J].
Bochar, DA ;
Wang, L ;
Beniya, H ;
Kinev, A ;
Xue, YT ;
Lane, WS ;
Wang, WD ;
Kashanchi, F ;
Shiekhattar, R .
CELL, 2000, 102 (02) :257-265
[10]   Identification of a Saccharomyces cerevisiae Ku80 homologue: Roles in DNA double strand break rejoining and in telomeric maintenance [J].
Boulton, SJ ;
Jackson, SP .
NUCLEIC ACIDS RESEARCH, 1996, 24 (23) :4639-4648