Simulation extrapolation deconvolution of finite population cumulative distribution function estimators

被引:26
作者
Stefanski, LA
Bay, JM
机构
[1] Department of Statistics, North Carolina State University, Raleigh
关键词
bias reduction; cumulative distribution function; inclusion probability; isotonic regression; measurement error; sampling;
D O I
10.1093/biomet/83.2.407
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
We study estimation of a finite population cumulative distribution function when sample units are measured with error. We propose a simple, bias-adjusted estimator that eliminates much of the bias induced by measurement error. A variance estimator for the proposed cumulative distribution function estimator is also obtained.
引用
收藏
页码:407 / 417
页数:11
相关论文
共 16 条
[1]   OPTIMAL RATES OF CONVERGENCE FOR DECONVOLVING A DENSITY [J].
CARROLL, RJ ;
HALL, P .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1988, 83 (404) :1184-1186
[2]  
CHAMBERS RL, 1986, BIOMETRIKA, V73, P597
[3]   PROPERTIES OF ESTIMATORS OF THE FINITE POPULATION-DISTRIBUTION FUNCTION [J].
CHAMBERS, RL ;
DORFMAN, AH ;
HALL, P .
BIOMETRIKA, 1992, 79 (03) :577-582
[4]  
Cochran W.G., 2007, SAMPLING TECHNIQUES
[5]   SIMULATION-EXTRAPOLATION ESTIMATION IN PARAMETRIC MEASUREMENT ERROR MODELS [J].
COOK, JR ;
STEFANSKI, LA .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1994, 89 (428) :1314-1328
[6]  
Eddington A. S., 1913, Mon. Not. R. Astron. Soc, V73, P359, DOI DOI 10.1093/MNRAS/73.5.359
[7]   ON THE OPTIMAL RATES OF CONVERGENCE FOR NONPARAMETRIC DECONVOLUTION PROBLEMS [J].
FAN, JQ .
ANNALS OF STATISTICS, 1991, 19 (03) :1257-1272
[8]   A CONSISTENT ESTIMATOR OF A COMPONENT OF A CONVOLUTION [J].
GAFFEY, WR .
ANNALS OF MATHEMATICAL STATISTICS, 1959, 30 (01) :198-205
[9]  
KUK AYC, 1988, BIOMETRIKA, V75, P97
[10]  
LIU MC, 1989, CANAD J STATIST, V17, P399