Highly divergent RfaH orthologs from pathogenic proteobacteria can substitute for Escherichia coli RfaH both in vivo and in vitro

被引:29
作者
Carter, HD [1 ]
Svetlov, V [1 ]
Artsimovitch, I [1 ]
机构
[1] Ohio State Univ, Dept Microbiol, Columbus, OH 43210 USA
关键词
D O I
10.1128/JB.186.9.2829-2840.2004
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
The transcriptional enhancer protein RfaH positively regulates production of virulence factors in Escherichia coli and Salmonella enterica serovar Typhimurium via a cis element, ops. Genes coding for MH orthologs were identified in conceptually translated genomes of bacterial pathogens, including Vibrio and Yersinia spp. We cloned the rfaH genes from Vibrio cholerae, Yersinia enterocolitica, S. enterica serovar Typhimuirium, and Klebsiella pneumoniae into E. coli expression vectors. Purified RfAH orthologs, including the most divergent one from V, choterae, were readily recruited to the E. coli transcription elongation complex. Postrecruitment stimulation of transcript elongation appeared to vary with the degree of similarity to E. coli RfaH. V. cholerae RfaH was particularly defective in reducing downstream pausing and termination; this defect was substantially alleviated by an increase in its concentration. When overexpressed episomally, all of the rfaH genes complemented the disruption of the chromosomal copy of the E. coli gene. Thus, despite the apparently accelerated divergent evolution of the RfaH proteins, the mechanism of their action is conserved well enough to make them transcriptionally active in the E. coli system.
引用
收藏
页码:2829 / 2840
页数:12
相关论文
共 44 条
[1]   BASIC LOCAL ALIGNMENT SEARCH TOOL [J].
ALTSCHUL, SF ;
GISH, W ;
MILLER, W ;
MYERS, EW ;
LIPMAN, DJ .
JOURNAL OF MOLECULAR BIOLOGY, 1990, 215 (03) :403-410
[2]   RNA polymerases from Bacillus subtilis and Escherichia coli differ in recognition of regulatory signals in vitro [J].
Artsimovitch, I ;
Svetlov, V ;
Anthony, L ;
Burgess, RR ;
Landick, R .
JOURNAL OF BACTERIOLOGY, 2000, 182 (21) :6027-6035
[3]   Pausing by bacterial RNA polymerase is mediated by mechanistically distinct classes of signals [J].
Artsimovitch, I ;
Landick, R .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (13) :7090-7095
[4]   Co-overexpression of Escherichia coli RNA polymerase subunits allows isolation and analysis of mutant enzymes lacking lineage-specific sequence insertions [J].
Artsimovitch, I ;
Svetlov, V ;
Murakami, KS ;
Landick, R .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (14) :12344-12355
[5]   The transcriptional regulator RfaH stimulates RNA chain synthesis after recruitment to elongation complexes by the exposed nontemplate DNA strand [J].
Artsimovitch, I ;
Landick, R .
CELL, 2002, 109 (02) :193-203
[6]   RfaH and the ops element, components of a novel system controlling bacterial transcription elongation [J].
Bailey, MJA ;
Hughes, C ;
Koronakis, V .
MOLECULAR MICROBIOLOGY, 1997, 26 (05) :845-851
[7]   2 ESCHERICHIA-COLI CHROMOSOMAL CISTRONS, SFRA AND SFRB, WHICH ARE NEEDED FOR EXPRESSION OF F-FACTOR TRA FUNCTIONS [J].
BEUTIN, L ;
ACHTMAN, M .
JOURNAL OF BACTERIOLOGY, 1979, 139 (03) :730-737
[8]   ESCHERICHIA-COLI NUSG PROTEIN STIMULATES TRANSCRIPTION ELONGATION RATES IN-VIVO AND IN-VITRO [J].
BUROVA, E ;
HUNG, SC ;
SAGITOV, V ;
STITT, BL ;
GOTTESMAN, ME .
JOURNAL OF BACTERIOLOGY, 1995, 177 (05) :1388-1392
[9]   CONTROL OF RIBOSOMAL-RNA TRANSCRIPTION IN ESCHERICHIA-COLI [J].
CONDON, C ;
SQUIRES, C ;
SQUIRES, CL .
MICROBIOLOGICAL REVIEWS, 1995, 59 (04) :623-&
[10]  
DENISOVA LJ, 1982, DOKL AKAD NAUK SSSR+, V267, P475