Efflux pump genes of the resistance-nodulation-division family in Burkholderia cenocepacia genome

被引:76
作者
Guglierame, Paola
Pasca, Maria Rosalia
De Rossi, Edda
Buroni, Silvia
Arrigo, Patrizio
Manina, Giulia
Riccardi, Giovanna
机构
[1] Univ Pavia, Dipartimento Genet & Microbiol, I-27100 Pavia, Italy
[2] CNR, Ist Studio Macromol, I-16149 Genoa, Italy
关键词
D O I
10.1186/1471-2180-6-66
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Background: Burkholderia cenocepacia is recognized as opportunistic pathogen that can cause lung infections in cystic fibrosis patients. A hallmark of B. cenocepacia infections is the inability to eradicate the organism because of multiple intrinsic antibiotic resistance. As Resistance-Nodulation-Division ( RND) efflux systems are responsible for much of the intrinsic multidrug resistance in Gram-negative bacteria, this study aims to identify RND genes in the B. cenocepacia genome and start to investigate their involvement into antimicrobial resistance. Results: Genome analysis and homology searches revealed 14 open reading frames encoding putative drug efflux pumps belonging to RND family in B. cenocepacia J2315 strain. By reverse transcription ( RT)-PCR analysis, it was found that orf3, orf9, orf11, and orf13 were expressed at detectable levels, while orf10 appeared to be weakly expressed in B. cenocepacia. Futhermore, orf3 was strongly induced by chloramphenicol. The orf2 conferred resistance to fluoroquinolones, tetraphenylphosphonium, streptomycin, and ethidium bromide when cloned and expressed in Escherichia coli KAM3, a strain lacking the multidrug efflux pump AcrAB. The orf2-overexpressing E. coli also accumulate low concentrations of ethidium bromide, which was restored to wild type level in the presence of CCCP, an energy uncoupler altering the energy of the drug efflux pump. Conclusion: The 14 RND pumps gene we have identified in the genome of B. cenocepacia suggest that active efflux could be a major mechanism underlying antimicrobial resistance in this microorganism. We have characterized the ORF2 pump, one of these 14 potential RND efflux systems. Its overexpression in E. coli conferred resistance to several antibiotics and to ethidium bromide but it remains to be determined if this pump play a significant role in the antimicrobial intrinsic resistance of B. cenocepacia. The characterization of antibiotic efflux pumps in B. cenocepacia is an obligatory step prior to the design of specific, potent bacterial inhibitors for the improved control of infectious diseases. Consequently, the topic deserves to be further investigated and future studies will involve systematic investigation on the function and expression of each of the RND efflux pump homologs.
引用
收藏
页数:14
相关论文
共 54 条
[1]   The MexR repressor of the mexAB-oprM multidrug efflux operon in Pseudomonas aeruginosa:: Characterization of mutations compromising activity [J].
Adewoye, L ;
Sutherland, A ;
Srikumar, R ;
Poole, K .
JOURNAL OF BACTERIOLOGY, 2002, 184 (15) :4308-4312
[2]   The role of multidrug efflux pumps in the antibiotic resistance of Pseudomonas aeruginosa and other gram-negative bacteria -: Insights from the society of infectious diseases pharmacists [J].
Aeschlimann, JR .
PHARMACOTHERAPY, 2003, 23 (07) :916-924
[3]   Aminoglycosides are captured from both periplasm and cytoplasm by the AcrD multidrug efflux transporter of Escherichia coli [J].
Aires, JR ;
Nikaido, H .
JOURNAL OF BACTERIOLOGY, 2005, 187 (06) :1923-1929
[4]   Involvement of an active efflux system in the natural resistance of Pseudomonas aeruginosa to aminoglycosides [J].
Aires, JR ;
Köhler, T ;
Nikaido, H ;
Plésiat, P .
ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, 1999, 43 (11) :2624-2628
[5]   Crystal structure of the drug discharge outer membrane protein, OprM, of Pseudomonas aeruginosa -: Dual modes of membrane anchoring and occluded cavity end [J].
Akama, H ;
Kanemaki, M ;
Yoshimura, M ;
Tsukihara, T ;
Kashiwagi, T ;
Yoneyama, H ;
Narita, S ;
Nakagawa, A ;
Nakae, T .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2004, 279 (51) :52816-52819
[6]   Crystal structure of the membrane fusion protein, MexA, of the multidrug transporter in Pseudomonas aeruginosa [J].
Akama, H ;
Matsuura, T ;
Kashiwagi, S ;
Yoneyama, H ;
Narita, SI ;
Tsukihara, T ;
Nakagawa, A ;
Nakae, T .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2004, 279 (25) :25939-25942
[7]   OUTER-MEMBRANE PERMEABILITY IN PSEUDOMONAS-CEPACIA - DIMINISHED PORIN CONTENT IN A BETA-LACTAM-RESISTANT MUTANT AND IN RESISTANT CYSTIC-FIBROSIS ISOLATES [J].
ARONOFF, SC .
ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, 1988, 32 (11) :1636-1639
[8]   SITES OF PREDICTED STRESS-INDUCED DNA DUPLEX DESTABILIZATION OCCUR PREFERENTIALLY AT REGULATORY LOCI [J].
BENHAM, CJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1993, 90 (07) :2999-3003
[9]   ISOLATION AND CHARACTERIZATION OF DIHYDROFOLATE-REDUCTASE FROM TRIMETHOPRIM-SUSCEPTIBLE AND TRIMETHOPRIM-RESISTANT PSEUDOMONAS-CEPACIA [J].
BURNS, JL ;
LIEN, DM ;
HEDIN, LA .
ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, 1989, 33 (08) :1247-1251
[10]   Nucleotide sequence analysis of a gene from Burkholderia (Pseudomonas) cepacia encoding an outer membrane lipoprotein involved in multiple antibiotic resistance [J].
Burns, JL ;
Wadsworth, CD ;
Barry, JJ ;
Goodall, CP .
ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, 1996, 40 (02) :307-313