Universal spectral correlations of the Dirac operator at finite temperature

被引:60
作者
Guhr, T [1 ]
Wettig, T [1 ]
机构
[1] TECH UNIV MUNICH, INST THEORET PHYS, D-85747 GARCHING, GERMANY
关键词
spectrum of the QCD Dirac operator; chiral random matrix models; finite temperature models;
D O I
10.1016/S0550-3213(97)00556-7
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
Using the graded eigenvalue method and a recently computed extension of the Itzykson-Zuber integral to complex matrices, we compute the k-point spectral correlation functions of the Dirac operator in a chiral random matrix model with a deterministic diagonal matrix added. We obtain results both on the scale of the mean level spacing and on the microscopic scale. We find that the microscopic spectral correlations have the same functional form as at zero temperature, provided that the microscopic variables are rescaled by the temperature-dependent chiral condensate. (C) 1997 Elsevier Science B.V.
引用
收藏
页码:589 / 611
页数:23
相关论文
共 55 条
[1]  
Abramowitz M., 1970, HDB MATH FUNCTIONS
[2]   Universality of random matrices in the microscopic limit and the Dirac operator spectrum [J].
Akemann, G ;
Damgaard, PH ;
Magnea, U ;
Nishigaki, S .
NUCLEAR PHYSICS B, 1997, 487 (03) :721-738
[3]   CHIRAL SYMMETRY-BREAKING IN CONFINING THEORIES [J].
BANKS, T ;
CASHER, A .
NUCLEAR PHYSICS B, 1980, 169 (1-2) :103-125
[4]  
BERBENNIBITSCH ME, HEPLAT9704018
[5]  
BOHIGAS O, 1984, LECT NOTES PHYSICS, V209
[6]   Oscillating density of states near zero energy for matrices made of blocks with possible application to the random flux problem [J].
Brezin, E ;
Hikami, S ;
Zee, A .
NUCLEAR PHYSICS B, 1996, 464 (03) :411-448
[8]   STATISTICAL THEORY OF ENERGY LEVELS OF COMPLEX SYSTEMS .3. [J].
DYSON, FJ .
JOURNAL OF MATHEMATICAL PHYSICS, 1962, 3 (01) :166-&
[9]  
DYSON FJ, 1962, J MATH PHYS, V3, P140, DOI 10.1063/1.1703773
[10]  
DYSON FJ, 1962, J MATH PHYS, V3, P157, DOI 10.1063/1.1703774