BIOCHEMICAL METHODS TO MONITOR AUTOPHAGY-RELATED PROCESSES IN YEAST

被引:155
作者
Cheong, Heesun [1 ]
Klionsky, Daniel J.
机构
[1] Univ Michigan, Inst Life Sci, Ann Arbor, MI 48109 USA
来源
AUTOPHAGY: LOWER EUKARYOTES AND NON-MAMMALIAN SYSTEMS, PT A | 2008年 / 451卷
关键词
D O I
10.1016/S0076-6879(08)03201-1
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
An increasing number of reports have elucidated the importance of macroautophagy in cell physiology and pathology. Macroautophagy occurs at a basal level and participates in the turnover of cytoplasmic constituents including long-lived proteins to maintain cellular homeostasis, but it also serves as an adaptive response to protect cells from various intra- or extracellular stresses. In addition, macroautophagy plays a rote in development and aging and acts to protect against cancer, microbial invasion, and neurodegeneration. The machinery involved in carrying out this process, the autophagy-related (Atg) proteins were identified and characterized in various fungal systems, in particular because of the powerful tools available for genetic manipulation and the relative abundance of good biochemical assays in these model organisms. The analysis of these Atg proteins has allowed us to begin to understand the molecular mechanism of this process. Furthermore, many of the autophagy genes are functionally conserved in higher eukaryotes, including mammals, allowing the findings in fungi to be applied to other systems. Here, we discuss three biochemical methods to measure autophagy-related activities and to examine individual steps of the corresponding process. These methods rely on the detection of different modification states of certain marker proteins. Processing of the precursor form of the resident vacuolar hydrolase aminopeptidase I (Ape1) is applicable to fungi, whereas cleavage of the GFP-Atg8 and Pex14-GFP chimeras can be used in a wide array of systems.
引用
收藏
页码:1 / 26
页数:26
相关论文
共 59 条
[1]   Dissection of autophagosome biogenesis into distinct nucleation and expansion steps [J].
Abeliovich, H ;
Dunn, WA ;
Kim, J ;
Klionsky, DJ .
JOURNAL OF CELL BIOLOGY, 2000, 151 (05) :1025-1033
[2]   Two distinct pathways for targeting proteins from the cytoplasm to the vacuole/lysosome [J].
Baba, M ;
Osumi, M ;
Scott, SV ;
Klionsky, DJ ;
Ohsumi, Y .
JOURNAL OF CELL BIOLOGY, 1997, 139 (07) :1687-1695
[3]   ULTRASTRUCTURAL ANALYSIS OF THE AUTOPHAGIC PROCESS IN YEAST - DETECTION OF AUTOPHAGOSOMES AND THEIR CHARACTERIZATION [J].
BABA, M ;
TAKESHIGE, K ;
BABA, N ;
OHSUMI, Y .
JOURNAL OF CELL BIOLOGY, 1994, 124 (06) :903-913
[4]   Atg17 regulates the magnitude of the autophagic response [J].
Cheong, H ;
Yorimitsu, T ;
Reggiori, F ;
Legakis, JE ;
Wang, CW ;
Klionsky, DJ .
MOLECULAR BIOLOGY OF THE CELL, 2005, 16 (07) :3438-3453
[5]   The Atg1 kinase complex is involved in the regulation of protein recruitment to initiate sequestering vesicle formation for nonspecific autophagy in Saccharomyces cerevisiae [J].
Cheong, Heesun ;
Nair, Usha ;
Geng, Jiefei ;
Klionsky, Daniel J. .
MOLECULAR BIOLOGY OF THE CELL, 2008, 19 (02) :668-681
[6]  
Dunn WA, 2005, AUTOPHAGY, V1, P75
[7]   Aut5/Cvt17p, a putative lipase essential for disintegration of autophagic bodies inside the vacuole [J].
Epple, UD ;
Suriapranata, I ;
Eskelinen, EL ;
Thumm, M .
JOURNAL OF BACTERIOLOGY, 2001, 183 (20) :5942-5955
[8]   Apg5p functions in the sequestration step in the cytoplasm-to-vacuole targeting and macroautophagy pathways [J].
George, MD ;
Baba, M ;
Scott, SV ;
Mizushima, N ;
Garrison, BS ;
Ohsumi, Y ;
Klionsky, DJ .
MOLECULAR BIOLOGY OF THE CELL, 2000, 11 (03) :969-982
[9]  
Gietz RD, 2002, METHOD ENZYMOL, V350, P87
[10]   Cvt18/Gsa12 is required for cytoplasm-to-vacuole transport, pexophagy, and autophagy in Saccharomyces cerevisiae and Pichia pastoris [J].
Guan, J ;
Stromhaug, PE ;
George, MD ;
Habibzadegah-Tari, P ;
Bevan, A ;
Dunn, WA ;
Klionsky, DJ .
MOLECULAR BIOLOGY OF THE CELL, 2001, 12 (12) :3821-3838