Modelled and observed variability in atmospheric vertical temperature structure

被引:35
作者
Gillett, NP [1 ]
Allen, MR
Tett, SFB
机构
[1] Univ Oxford, Oxford OX1 2JD, England
[2] Rutherford Appleton Lab, Dept Space Sci, Didcot, Oxon, England
[3] Hadley Ctr Climate Predict & Res, Bracknell, Berks, England
关键词
D O I
10.1007/PL00007921
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
Realistic simulation of the internal variability of the climate system is important both for climate change detection and as an indicator of whether the physics of the climate system is well-represented in a climate model. In this work zonal mean atmospheric temperatures from a control run of the second Hadley Centre coupled GCM are compared with gridded radiosonde observations for the past 38 years to examine how well modelled and observed variability agree. On time scales of between sir; months and twenty years, simulated and observed variability of global mean temperatures agree well for the troposphere, but in the equatorial stratosphere variability is lower in the model than in the observations, particularly at periods of two years and seven to twenty years. We find good agreement between modelled and observed variability in the mass-weighted amplitude of a forcing-response pattern, as used for climate change detection, but variability in a signal-to-noise optimised fingerprint pattern is significantly greater in the observations than in a model control run. This discrepancy is marginally consistent with anthropogenic forcing, but more clearly explained by a combination of solar and volcanic forcing, suggesting these should be considered in future 'vertical detection' studies. When the relationship between tropical lapse rate and mean temperature was examined, it was found that these quantities are unrealistically coherent in the model at periods above three years. However, there is a clear negative lapse rate feedback in both model and observations: as the tropical troposphere warms, the mid-tropospheric lapse rate decreases on all the time scales considered.
引用
收藏
页码:49 / 61
页数:13
相关论文
共 42 条
[1]   Optimal filtering in singular spectrum analysis [J].
Allen, MR ;
Smith, LA .
PHYSICS LETTERS A, 1997, 234 (06) :419-428
[2]   Checking for model consistency in optimal fingerprinting [J].
Allen, MR ;
Tett, SFB .
CLIMATE DYNAMICS, 1999, 15 (06) :419-434
[3]  
[Anonymous], 1990, DYNAMICS ATMOSPHERIC
[4]  
Bloomfield Paul., 2014, The Virtues of Happiness: A Theory of the Good Life, DOI DOI 10.1093/ACPROF:OSO/9780199827367.001.0001
[5]  
BROWN SJ, 1999, P 23 CLIM DIAGN WORK
[6]  
Bryan K., 1997, Journal of Computational Physics, V135, P154, DOI [10.1016/0021-9991(69)90004-7, 10.1006/jcph.1997.5699]
[7]   APPLICATION OF LEAST SQUARES REGRESSION TO RELATIONSHIPS CONTAINING AUTOCORRELATED ERROR TERMS [J].
COCHRANE, D ;
ORCUTT, GH .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1949, 44 (245) :32-61
[8]  
Cox M. D., 1984, 1 GFDL OC GROUP
[9]  
Gill AE., 1982, ATMOSPHERE OCEAN DYN, P317, DOI 10.1016/S0074-6142(08)60034-0
[10]   GLOBAL CLIMATE CHANGES AS FORECAST BY GODDARD INSTITUTE FOR SPACE STUDIES 3-DIMENSIONAL MODEL [J].
HANSEN, J ;
FUNG, I ;
LACIS, A ;
RIND, D ;
LEBEDEFF, S ;
RUEDY, R ;
RUSSELL, G ;
STONE, P .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1988, 93 (D8) :9341-9364