Cation-π interactions in ligand recognition by serotonergic (5-HT3A) and nicotinic acetylcholine receptors:: The anomalous binding properties of nicotine

被引:254
作者
Beene, DL
Brandt, GS
Zhong, WG
Zacharias, NM
Lester, HA
Dougherty, DA [1 ]
机构
[1] CALTECH, Div Chem & Chem Engn, Pasadena, CA 91125 USA
[2] CALTECH, Div Biol, Pasadena, CA 91125 USA
关键词
D O I
10.1021/bi020266d
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
A series of tryptophan analogues has been introduced into the binding site regions of two ion channels, the ligand-gated nicotinic acetylcholine and serotonin 5-HT3A receptors, using unnatural amino acid mutagenesis and heterologous expression in Xenopus oocytes. A cation-pi interaction between serotonin and Trp183 of the serotonin channel 5-HT3AR is identified for the first time, precisely locating the ligand-binding site of this receptor. The energetic contribution of the observed cation-pi interaction between a tryptophan and the primary ammonium ion of serotonin is estimated to be approximately 4 kcal/mol, while the comparable interaction with the quaternary ammonium of acetylcholine is approximately 2 kcal/mol. The binding mode of nicotine to the nicotinic receptor of mouse muscle is examined by the same technique and found to differ significantly from that of the natural agonist, acetylcholine.
引用
收藏
页码:10262 / 10269
页数:8
相关论文
共 46 条
[1]   HYDROGEN-BONDING .7. A SCALE OF SOLUTE HYDROGEN-BOND ACIDITY BASED ON LOG K-VALUES FOR COMPLEXATION IN TETRACHLOROMETHANE [J].
ABRAHAM, MH ;
GRELLIER, PL ;
PRIOR, DV ;
DUCE, PP ;
MORRIS, JJ ;
TAYLOR, PJ .
JOURNAL OF THE CHEMICAL SOCIETY-PERKIN TRANSACTIONS 2, 1989, (06) :699-711
[2]   Mechanisms for activation and antagonism of an AMPA-Sensitive glutamate receptor: Crystal structures of the GluR2 ligand binding core [J].
Armstrong, N ;
Gouaux, E .
NEURON, 2000, 28 (01) :165-181
[3]   Pharmacology of nicotine: Addiction and therapeutics [J].
Benowitz, NL .
ANNUAL REVIEW OF PHARMACOLOGY AND TOXICOLOGY, 1996, 36 :597-613
[4]   Analysis of the ligand binding site of the 5-HT3 receptor using site directed mutagenesis: Importance of glutamate 106 [J].
Boess, FG ;
Steward, LJ ;
Steele, JA ;
Liu, D ;
Reid, J ;
Glencorse, TA ;
Martin, IL .
NEUROPHARMACOLOGY, 1997, 36 (4-5) :637-647
[5]   Pharmacological comparison of human homomeric 5-HT3A receptors versus heteromeric 5-HT3A/3B receptors [J].
Brady, CA ;
Stanford, IM ;
Ali, I ;
Lin, L ;
Williams, JM ;
Dubin, AE ;
Hope, AG ;
Barnes, NM .
NEUROPHARMACOLOGY, 2001, 41 (02) :282-284
[6]   Crystal structure of an ACh-binding protein reveals the ligand-binding domain of nicotinic receptors [J].
Brejc, K ;
van Dijk, WJ ;
Klaassen, RV ;
Schuurmans, M ;
van der Oost, J ;
Smit, AB ;
Sixma, TK .
NATURE, 2001, 411 (6835) :269-276
[7]   Identification of tryptophan 55 as the primary site of [3H]nicotine photoincorporation in the γ-subunit of the Torpedo nicotinic acetylcholine receptor [J].
Chiara, DC ;
Middleton, RE ;
Cohen, JB .
FEBS LETTERS, 1998, 423 (02) :223-226
[8]  
Colquhoun D, 1998, BRIT J PHARMACOL, V125, P924
[9]   Nicotinic receptors at the amino acid level [J].
Corringer, PJ ;
Le Novère, N ;
Changeux, JP .
ANNUAL REVIEW OF PHARMACOLOGY AND TOXICOLOGY, 2000, 40 :431-458
[10]   A new look at the neuronal nicotinic acetylcholine receptor pharmacophore [J].
Curtis, L ;
Chiodini, F ;
Spang, JE ;
Bertrand, S ;
Patt, JT ;
Westera, G ;
Bertrand, D .
EUROPEAN JOURNAL OF PHARMACOLOGY, 2000, 393 (1-3) :155-163