The modulational regime of three-dimensional water waves and the Davey-Stewartson system

被引:110
作者
Craig, W
Schanz, U
Sulem, C
机构
[1] BROWN UNIV,LEFSCHETZ CTR DYNAM SYST,PROVIDENCE,RI 02912
[2] UNIV TORONTO,DEPT MATH,TORONTO,ON M5S 3G3,CANADA
来源
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE | 1997年 / 14卷 / 05期
基金
美国国家科学基金会; 加拿大自然科学与工程研究理事会;
关键词
modulation; water waves;
D O I
10.1016/S0294-1449(97)80128-X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Nonlinear modulation of gravity-capillary waves travelling principally in one direction at the surface of a three-dimensional fluid leads to the Davey-Stewartson system for the wave amplitude and the induced mean flow. In this paper, we present a rigorous derivation of the system and show that the resulting wavepacket satisfies the water wave equations at leading order-with precise bounds for the remainder. Key steps in the analysis are the analyticity of the Dirichlet-Neumann operator with respect to the surface elevation that defines the fluid domain, precise bounds for the Taylor remainders and the description of individual terms in the Taylor series as pseudo-differential operators and their estimates under multiple scale expansions.
引用
收藏
页码:615 / 667
页数:53
相关论文
共 27 条
[1]   EVOLUTION OF PACKETS OF WATER-WAVES [J].
ABLOWITZ, MJ ;
SEGUR, H .
JOURNAL OF FLUID MECHANICS, 1979, 92 (JUN) :691-715
[2]  
BENNEY DJ, 1969, STUD APPL MATH, V48, P377
[3]   POLYNOMIAL-GROWTH ESTIMATES FOR MULTILINEAR SINGULAR INTEGRAL-OPERATORS [J].
CHRIST, M ;
JOURNE, JL .
ACTA MATHEMATICA, 1987, 159 (1-2) :51-80
[4]  
COIFMAN RR, 1985, P SYMP PURE MATH, V43, P71
[5]   THE TIME-DEPENDENT AMPLITUDE EQUATION FOR THE SWIFT-HOHENBERG PROBLEM [J].
COLLET, P ;
ECKMANN, JP .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1990, 132 (01) :139-153
[6]   AN EXISTENCE THEORY FOR WATER-WAVES AND THE BOUSSINESQ AND KORTEWEG-DEVRIES SCALING LIMITS [J].
CRAIG, W .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1985, 10 (08) :787-1003
[7]   NUMERICAL-SIMULATION OF GRAVITY-WAVES [J].
CRAIG, W ;
SULEM, C .
JOURNAL OF COMPUTATIONAL PHYSICS, 1993, 108 (01) :73-83
[8]   HAMILTONIAN LONG-WAVE APPROXIMATIONS TO THE WATER-WAVE PROBLEM [J].
CRAIG, W ;
GROVES, MD .
WAVE MOTION, 1994, 19 (04) :367-389
[9]  
CRAIG W, 1992, NONLINEARITY, V108, P497
[10]   3-DIMENSIONAL PACKETS OF SURFACE-WAVES [J].
DAVEY, A ;
STEWARTSON, K .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1974, 338 (1613) :101-110