Caveolin-1 deficiency stimulates neointima formation during vascular injury

被引:66
作者
Hassan, GS
Jasmin, JF
Schubert, W
Frank, PG
Lisanti, MP
机构
[1] Albert Einstein Coll Med, Dept Urol, Bronx, NY 10461 USA
[2] Montefiore Med Ctr, Albert Einstein Coll Med, Bronx, NY 10467 USA
[3] Albert Einstein Coll Med, Dept Mol Pharmacol, Bronx, NY 10461 USA
关键词
D O I
10.1021/bi049609t
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Neointima formation is a process characterized by smooth muscle cell (SMC) proliferation and extracellular matrix deposition in the vascular intimal layer. Here, we critically evaluate the role of caveolin-1 (Cav-1) in the pathogenesis of neointima formation. Cav-1 and caveolae organelles are particularly abundant in SMCs, where they are thought to function in membrane trafficking and signal transduction events. To directly evaluate the role of Cav-1 in the pathogenesis of neointimal lesions, we used Cav-1-deficient (Cav-1 -/-) mice as a model system. The right common carotid artery of wild-type and Cav-1 -/- mice was ligated just proximal to its bifurcation. Specimens were then harvested 4-weeks postligation and processed for morphometric and immunohistochemical analyses. The carotids of Cav-1 -/- mice showed significantly more intimal hyperplasia with subtotal luminal obstruction, as compared to wild-type mice. These neointimal lesions consisted mainly of SMCs. Mechanistically, neointimal lesions derived from Cav-1 -/- mice exhibited higher levels of phospho-p42/44 MAP kinase and cyclin D1 immunostaining, consistent with the idea that Cav-1 functions as a negative regulator of signal transduction. A significant increase in phospho-Rb (Ser780) immunostaining was also observed, in line with the upregulation of cyclin D1. In conclusion, using a carotid artery blood-flow cessation model, we show that genetic ablation of Cav-1 in mice stimulates SMC proliferation (neointimal hyperplasia), with concomitant activation of the p42/44 MAP kinase cascade and upregulation of cyclin D1. Importantly, our current study is the first to investigate the role of Cav-1 in SMC proliferation in the vascular system using Cav-1 -/- mice.
引用
收藏
页码:8312 / 8321
页数:10
相关论文
共 34 条
[1]   ANASTOMOTIC INTIMAL HYPERPLASIA - MECHANICAL INJURY OR FLOW INDUCED [J].
BASSIOUNY, HS ;
WHITE, S ;
GLAGOV, S ;
CHOI, E ;
GIDDENS, DP ;
ZARINS, CK .
JOURNAL OF VASCULAR SURGERY, 1992, 15 (04) :708-717
[2]   Absence of caveolin-1 sensitizes mouse skin to carcinogen-induced epidermal hyperplasia and tumor formation [J].
Capozza, F ;
Williams, TM ;
Schubert, W ;
McClain, S ;
Bouzahzah, B ;
Sotgia, F ;
Lisanti, MP .
AMERICAN JOURNAL OF PATHOLOGY, 2003, 162 (06) :2029-2039
[3]   Senescent phenotype can be reversed by reduction of caveolin status [J].
Cho, KA ;
Ryu, SJ ;
Park, JS ;
Jang, IS ;
Ahn, JS ;
Kim, KT ;
Park, SC .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (30) :27789-27795
[4]   Caveolin-1 null mice develop cardiac hypertrophy with hyperactivation of p42/44 MAP kinase in cardiac fibroblasts [J].
Cohen, AW ;
Park, DS ;
Woodman, SE ;
Williams, TM ;
Chandra, M ;
Shirani, J ;
De Souza, AP ;
Kitsis, RN ;
Russell, RG ;
Weiss, LM ;
Tang, BY ;
Jelicks, LA ;
Factor, SM ;
Shtutin, V ;
Tanowitz, HB ;
Lisanti, MP .
AMERICAN JOURNAL OF PHYSIOLOGY-CELL PHYSIOLOGY, 2003, 284 (02) :C457-C474
[5]   Interaction of a receptor tyrosine kinase, EGF-R, with caveolins - Caveolin binding negatively regulates tyrosine and serine/threonine kinase activities [J].
Couet, J ;
Sargiacomo, M ;
Lisanti, MP .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (48) :30429-30438
[6]   Induction of β-cell proliferation and retinoblastoma protein phosphorylation in rat and human islets using adenovirus-mediated transfer of cyclin-dependent kinase-4 and cyclin D1 [J].
Cozar-Castellano, I ;
Takane, KK ;
Bottino, R ;
Balamurugan, AN ;
Stewart, AF .
DIABETES, 2004, 53 (01) :149-159
[7]   Loss of caveolae, vascular dysfunction, and pulmonary defects in caveolin-1 gene-disrupted mice [J].
Drab, M ;
Verkade, P ;
Elger, M ;
Kasper, M ;
Lohn, M ;
Lauterbach, B ;
Menne, J ;
Lindschau, C ;
Mende, F ;
Luft, FC ;
Schedl, A ;
Haller, H ;
Kurzchalia, TV .
SCIENCE, 2001, 293 (5539) :2449-2452
[8]   Caveolin-mediated regulation of signaling along the p42/44 MAP kinase cascade in vivo - A role for the caveolin-scaffolding domain [J].
Engelman, JA ;
Chu, C ;
Lin, A ;
Jo, H ;
Ikezu, T ;
Okamoto, T ;
Kohtz, DS ;
Lisanti, MP .
FEBS LETTERS, 1998, 428 (03) :205-211
[9]   Caveolin-1 expression negatively regulates cell cycle progression by inducing G0/G1 arrest via a p53/p21WAF1/Cip1-dependent mechanism [J].
Galbiati, F ;
Volonte, D ;
Liu, J ;
Capozza, F ;
Frank, PG ;
Zhu, L ;
Pestell, RG ;
Lisanti, MP .
MOLECULAR BIOLOGY OF THE CELL, 2001, 12 (08) :2229-2244
[10]   Targeted downregulation of caveolin-1 is sufficient to drive cell transformation and hyperactivate the p42/44 MAP kinase cascade [J].
Galbiati, F ;
Volonté, D ;
Engelman, JA ;
Watanabe, G ;
Burk, R ;
Pestell, RG ;
Lisanti, MP .
EMBO JOURNAL, 1998, 17 (22) :6633-6648