Reactive oxygen species (ROS) are regulators of redox-sensitive cell signaling pathways. In osteoarthritis, human interleukin-1 beta is implicated in cartilage destruction through an ROS-dependent matrix metalloproteinase production. To determine the molecular source of ROS production in the human IL-1 beta (HIL-1 beta)-sensitive chondrocyte immortalized cell line C-20/A4,. transfected cells were constructed that overexpress NAD(P)H oxidases. First, RT-PCR analysis showed that the C-20/A4 cell line expressed Nox2, Nox4, p22(phox), and p67(phox), but not p47(phox). It was found that ROS production by C-20/A4 chondrocytes does not depend on PMA and ionomycin activation. This indicates that Nox2 was not involved in the production of ROS. In G 20/A4 cells that overexpress Nox4, hIL-1 beta stimulated ROS production three times more than the normal production of C-20/A4 cells. Moreover, there was a fourfold increase in the production of collagenase (MMP-1) by chondrocytes that overexpress Nox4. Interestingly, MMP-1 production in cells that overexpress Nox2 was not sensitive to hIL-1 beta. These data suggest that under hIL-1 beta stimulation, C-20/A4 chondrocytes produce MMP-1 through a Nox4-mediated, ROS-dependent pathway.