Structure-function analyses of the Ssc1p, Mdj1p, and Mge1p Saccharomyces cerevisiae mitochondrial proteins in Escherichia coli

被引:38
作者
Deloche, O
Kelley, WL
Georgopoulos, C
机构
[1] Dépt. de Biochim. Méd., Centre Médical Universitaire
[2] Dépt. de Biochim. Méd., Centre Médical Universitaire, 1211 Geneva 4, 1, rue Michel-Servet
关键词
D O I
10.1128/jb.179.19.6066-6075.1997
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
The DnaK, DnaJ, and GrpE proteins of Escherichia coli have been universally conserved across the biological kingdoms and work together to constitute a highly efficient molecular chaperone machine. We have examined the extent of functional conservation of Saccharomyces cerevisiae Ssc1p, Mdj1p, and Mge1p by analyzing their ability to substitute for their corresponding E. coli homologs in vivo. We found that the expression of yeast Mge1p, the GrpE homolog, allowed for the deletion of the otherwise essential grpE gene off. coli, albeit only up to 40 degrees C. The inability of Mge1p tea substitute for GrpE at very high temperatures is consistent with our previous finding that it specifically failed to stimulate DnaK's ATPase at such extreme conditions. In contrast to Mge1p, overexpression of Mdj1p, the DnaJ homolog, was lethal in E. coli. This toxicity was specifically relieved by mutations which affected the putative zinc binding region of Mdj1p. Overexpression of a truncated version of Mdj1p, containing the J- and Gly/Phe-rich domains, partially substituted for DnaJ function at high temperature. A chimeric protein, consisting of the J domain of Mdj1p coupled to the rest of DnaJ, acted as a super-DnaJ protein, functioning even more efficiently than wild-type DnaJ. In contrast to the results with Mge1p and Mdj1p, both the expression and function of Ssc1p, the DnaK homolog, were severely compromised in E. coli. We were unable to demonstrate and functional complementation by Ssc1p, even when coexpressed with its Mdj1p cochaperone in E. coli.
引用
收藏
页码:6066 / 6075
页数:10
相关论文
共 55 条
[1]  
ALFANO C, 1989, J BIOL CHEM, V264, P10709
[2]   ESCHERICHIA-COLI GRPE GENE CODES FOR HEAT-SHOCK PROTEIN B25.3, ESSENTIAL FOR BOTH LAMBDA-DNA REPLICATION AT ALL TEMPERATURES AND HOST GROWTH AT HIGH-TEMPERATURE [J].
ANG, D ;
CHANDRASEKHAR, GN ;
ZYLICZ, M ;
GEORGOPOULOS, C .
JOURNAL OF BACTERIOLOGY, 1986, 167 (01) :25-29
[3]   THE HEAT-SHOCK-REGULATED GRPE GENE OF ESCHERICHIA-COLI IS REQUIRED FOR BACTERIAL-GROWTH AT ALL TEMPERATURES BUT IS DISPENSABLE IN CERTAIN MUTANT BACKGROUNDS [J].
ANG, D ;
GEORGOPOULOS, C .
JOURNAL OF BACTERIOLOGY, 1989, 171 (05) :2748-2755
[4]  
ANG D, UNPUB
[5]   Real time kinetics of the DnaK DnaJ GrpE molecular chaperone machine action [J].
Banecki, B ;
Zylicz, M .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1996, 271 (11) :6137-6143
[6]   Structure-function analysis of the zinc finger region of the DnaJ molecular chaperone [J].
Banecki, B ;
Liberek, K ;
Wall, D ;
Wawrzynow, A ;
Georgopoulos, C ;
Bertoli, E ;
Tanfani, F ;
Zylicz, M .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1996, 271 (25) :14840-14848
[7]  
Baxter BK, 1996, MOL CELL BIOL, V16, P6444
[8]   BOTH AMBIENT-TEMPERATURE AND THE DNAK CHAPERONE MACHINE MODULATE THE HEAT-SHOCK RESPONSE IN ESCHERICHIA-COLI BY REGULATING THE SWITCH BETWEEN SIGMA(70) AND SIGMA(32) FACTORS ASSEMBLED WITH RNA-POLYMERASE [J].
BLASZCZAK, A ;
ZYLICZ, M ;
GEORGOPOULOS, C ;
LIBEREK, K .
EMBO JOURNAL, 1995, 14 (20) :5085-5093
[9]   A MITOCHONDRIAL HOMOLOG OF BACTERIAL GRPE INTERACTS WITH MITOCHONDRIAL HSP70 AND IS ESSENTIAL FOR VIABILITY [J].
BOLLIGER, L ;
DELOCHE, O ;
GLICK, BS ;
GEORGOPOULOS, C ;
JENO, P ;
KRONIDOU, N ;
HORST, M ;
MORISHIMA, N ;
SCHATZ, G .
EMBO JOURNAL, 1994, 13 (08) :1998-2006
[10]   TRANSPOSITION AND FUSION OF LAC GENES TO SELECTED PROMOTERS IN ESCHERICHIA-COLI USING BACTERIOPHAGE-LAMBDA AND BACTERIOPHAGE-MU [J].
CASADABAN, MJ .
JOURNAL OF MOLECULAR BIOLOGY, 1976, 104 (03) :541-555