Evaluation of locked nucleic acid-modified small interfering RNA in vitro and in vivo

被引:129
作者
Mook, Olaf R. [1 ]
Baas, Frank [1 ]
de Wissel, Marit B. [1 ]
Fluiter, Kees [1 ]
机构
[1] Univ Amsterdam, Acad Med Ctr, Dept Neurogenet, NL-1105 AZ Amsterdam, Netherlands
关键词
D O I
10.1158/1535-7163.MCT-06-0195
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
RNA interference has become widely used as an experimental tool to study gene function. In addition, small interfering RNA (siRNA) may have great potential for the treatment of diseases. Recently, it was shown that siRNA can be used to mediate gene silencing in mouse models. Locally administered siRNAs entered the first clinical trials, but strategies for successful systemic delivery of siRNA are still under development. Challenges still exist about the stability, delivery, and therapeutic efficacy of siRNA. In the present study, we compare the efficacy of two methods of systemic siRNA delivery and the effects of siRNA modifications using locked nucleic acids (LNA) in a xenograft cancer model. Low volume tail vein bolus injections and continuous s.c. delivery using osmotic minipumps yielded similar uptake levels of unmodified siRNA by tumor xenografts. Both routes of administration mediated sequence-specific inhibition of two unrelated targets inside tumor xenografts. Previous studies have shown that LNA can be incorporated into the sense strand of siRNA while the efficacy is retained. Modification of siRNA targeting green fluorescent protein with LNA results in a significant increase in serum stability and thus may be beneficial for clinical applications. We show that minimal 3' end LNA modifications of siRNA are effective in stabilization of siRNA. Multiple LNA modifications in the accompanying strand further increase the stability but negate the efficacy in vitro and in vivo. In vivo, LNA-modified siRNA reduced off-target gene regulation compared with nonmodified siRNA. End-modified siRNA targeting green fluorescent protein provides a good trade-off between stability and efficacy in vivo using the two methods of systemic delivery. in the nude mouse model. Therefore, LNA-modified siRNA should be preferred over unmodified siRNA.
引用
收藏
页码:833 / 843
页数:11
相关论文
共 30 条
[1]   Tolerance for mutations and chemical modifications in a siRNA [J].
Amarzguioui, M ;
Holen, T ;
Babaie, E ;
Prydz, H .
NUCLEIC ACIDS RESEARCH, 2003, 31 (02) :589-595
[2]   In vivo fate of phosphorothioate antisense oligodeoxynucleotides: Predominant uptake by scavenger receptors on endothelial liver cells [J].
Bijsterbosch, MK ;
Manoharan, M ;
Rump, ET ;
DeVrueh, RLA ;
vanVeghel, R ;
Tivel, KL ;
Biessen, EAL ;
Bennett, CF ;
Cook, PD ;
vanBerkel, TJC .
NUCLEIC ACIDS RESEARCH, 1997, 25 (16) :3290-3296
[3]   3′ UTR seed matches, but not overall identity, are associated with RNAi off-targets [J].
Birmingham, A ;
Anderson, EM ;
Reynolds, A ;
Ilsley-Tyree, D ;
Leake, D ;
Fedorov, Y ;
Baskerville, S ;
Maksimova, E ;
Robinson, K ;
Karpilow, J ;
Marshall, WS ;
Khvorova, A .
NATURE METHODS, 2006, 3 (03) :199-204
[4]   RNA interference in mammalian cells by chemically-modified RNA [J].
Braasch, DA ;
Jensen, S ;
Liu, YH ;
Kaur, K ;
Arar, K ;
White, MA ;
Corey, DR .
BIOCHEMISTRY, 2003, 42 (26) :7967-7975
[5]   GENOMIC SEQUENCING [J].
CHURCH, GM ;
GILBERT, W .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA-BIOLOGICAL SCIENCES, 1984, 81 (07) :1991-1995
[6]   Structural variations and stabilising modifications of synthetic siRNAs in mammalian cells [J].
Czauderna, F ;
Fechtner, M ;
Dames, S ;
Aygün, H ;
Klippel, A ;
Pronk, GJ ;
Giese, K ;
Kaufmann, J .
NUCLEIC ACIDS RESEARCH, 2003, 31 (11) :2705-2716
[7]   Systemic siRNA-mediated gene silencing - A new approach to targeted therapy of cancer [J].
Duxbury, MS ;
Matros, E ;
Ito, H ;
Zinner, MJ ;
Ashley, SW ;
Whang, EE .
ANNALS OF SURGERY, 2004, 240 (04) :667-674
[8]  
Eder P S, 1991, Antisense Res Dev, V1, P141
[9]   Locked nucleic acid (LNA) mediated improvements in siRNA stability and functionality [J].
Elmén, J ;
Thonberg, H ;
Ljungberg, K ;
Frieden, M ;
Westergaard, M ;
Xu, YH ;
Wahren, B ;
Liang, ZC ;
Urum, H ;
Koch, T ;
Wahlestedt, C .
NUCLEIC ACIDS RESEARCH, 2005, 33 (01) :439-447
[10]   In vivo tumor growth inhibition and biodistribution studies of locked nucleic acid (LNA) antisense oligonucleotides [J].
Fluiter, K ;
ten Asbroek, ALMA ;
de Wissel, MB ;
Jakobs, ME ;
Wissenbach, M ;
Olsson, H ;
Olsen, O ;
Oerum, H ;
Baas, F .
NUCLEIC ACIDS RESEARCH, 2003, 31 (03) :953-962