Unsupervised change-detection methods for remote-sensing images

被引:96
作者
Melgani, F
Moser, G
Serpico, SB
机构
[1] Univ Trent, Dept Informat & Commun Technol, I-38050 Trento, Italy
[2] Univ Genoa, Dept Biophys & Elect Engn, I-16145 Genoa, Italy
关键词
remote sensing; pattern classification; change detection; thresholding; expectation-maximization algorithm;
D O I
10.1117/1.1518995
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
An unsupervised change detection problem can be viewed as a classification problem with only two classes corresponding to the change and no-change areas, respectively. Thanks to its simplicity, image differencing is a widely used approach to change detection. It is based on the idea of generating a difference image that represents the modulus of the spectral change vector associated with each pixel in the study area. To separate the "change" and "no-change" classes in the difference image, a simple thresholding-based procedure can be applied. However, the selection of the best threshold value is not a trivial problem. We investigate and compare several simple thresholding methods. The combination of the expectation-maximization algorithm with a thresholding method is also performed for the purpose of achieving a better estimate of the optimal threshold value. As an experimental investigation, a study area damaged by a forest fire is considered. Two Landsat TM images of the area acquired before and after the event are utilized to detect the burnt zones and to assess and compare the mentioned unsupervised change-detection methods. (C) 2002 Society of Photo-Optical Instrumentation Engineers.
引用
收藏
页码:3288 / 3297
页数:10
相关论文
共 17 条
[1]   Automatic analysis of the difference image for unsupervised change detection [J].
Bruzzone, L ;
Prieto, DF .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2000, 38 (03) :1171-1182
[2]   An iterative technique for the detection of land-cover transitions in multitemporal remote-sensing images [J].
Bruzzone, L ;
Serpico, SB .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 1997, 35 (04) :858-867
[3]   A neural-statistical approach to multitemporal and multisource remote-sensing image classification [J].
Bruzzone, L ;
Prieto, DF ;
Serpico, SB .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 1999, 37 (03) :1350-1359
[4]  
CHI Z, 1996, FUZZY ALGORITHMS APP, P45
[5]   Estimation of generalized mixtures and its application in image segmentation [J].
Delignon, Y ;
Marzouki, A ;
Pieczynski, W .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 1997, 6 (10) :1364-1375
[6]   MAXIMUM LIKELIHOOD FROM INCOMPLETE DATA VIA EM ALGORITHM [J].
DEMPSTER, AP ;
LAIRD, NM ;
RUBIN, DB .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-METHODOLOGICAL, 1977, 39 (01) :1-38
[7]  
Duda R O., 2001, Pattern Classification, P117
[8]  
FUKUNAGA K, 1990, INTRO STAT PATTERN R, P26
[9]   IMAGE THRESHOLDING BY MINIMIZING THE MEASURES OF FUZZINESS [J].
HUANG, LK ;
WANG, MJJ .
PATTERN RECOGNITION, 1995, 28 (01) :41-51
[10]   An adaptive classifier design for high-dimensional data analysis with a limited training data set [J].
Jackson, Q ;
Landgrebe, DA .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2001, 39 (12) :2664-2679