FLO11 mediated filamentous growth of the yeast Saccharomyces cerevisiae depends on the expression of the ribosomal RPS26 genes

被引:20
作者
Strittmatter, Axel W. [1 ]
Fischer, Claudia [1 ]
Kleinschmidt, Malte [1 ]
Braus, Gerhard H. [1 ]
机构
[1] Univ Gottingen, Inst Microbiol & Genet, D-37077 Gottingen, Germany
关键词
Saccharomyces cerevisiae; Rps26p; FLO11; adhesion; pseudohyphae;
D O I
10.1007/s00438-006-0127-7
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The RPS26A and RPS26B isogenes of Saccharomyces cerevisiae encode two almost identical proteins of the small 40S ribosomal subunit, which differ by only two amino acid residues. Growth of an rps26B Delta mutant strain is normal, whereas an rps26A Delta strain displays a reduced growth rate and increased sensitivity towards the specific translational inhibitor paromomycin. An rps26A Delta rps26B Delta double mutant strain is inviable. RPS26A but not RPS26B is required for haploid adhesive and diploid pseudohyphal growth mediated by FLO11, which encodes an adhesion. The RPS26A and RPS26B transcripts make up about 70 and 30% of the cellular RPS26 mRNA, respectively. Overexpression of RPS26B, as well as an RPS26B open reading frame driven by the RPS26A promoter, complements the rps26A Delta deletion and restores haploid invasive growth as well as diploid pseudohyphal growth. These results suggest that the two proteins are functionally interchangeable. FLO11-lacZ activity is not present in haploid rps26A Delta yeast mutant strains, even though FLO11 mRNA levels are not reduced. This suggests that the amount of Rps26p is critical for accurate translation of the FLO11 mRNA, and therefore for the dimorphic switch of the baker's yeast from a single cell yeast to an adhesive filamentous growth form.
引用
收藏
页码:113 / 125
页数:13
相关论文
共 39 条
[1]  
Braus GH, 2003, MOL BIOL CELL, V14, P4272, DOI 10.1091/mbc.E03-01-0042
[2]  
Caro LHP, 1997, YEAST, V13, P1477, DOI 10.1002/(SICI)1097-0061(199712)13:15<1477::AID-YEA184>3.0.CO
[3]  
2-L
[4]   Functional insights from the structure of the 30S ribosomal subunit and its interactions with antibiotics [J].
Carter, AP ;
Clemons, WM ;
Brodersen, DE ;
Morgan-Warren, RJ ;
Wimberly, BT ;
Ramakrishnan, V .
NATURE, 2000, 407 (6802) :340-348
[5]   A POTENTIAL POSITIVE FEEDBACK LOOP CONTROLLING CLN1 AND CLN2 GENE-EXPRESSION AT THE START OF THE YEAST-CELL CYCLE [J].
CROSS, FR ;
TINKELENBERG, AH .
CELL, 1991, 65 (05) :875-883
[6]   Glucose depletion causes haploid invasive growth in yeast [J].
Cullen, PJ ;
Sprague, GF .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (25) :13619-13624
[7]   The Ashbya gossypii genome as a tool for mapping the ancient Saccharomyces cerevisiae genome [J].
Dietrich, FS ;
Voegeli, S ;
Brachat, S ;
Lerch, A ;
Gates, K ;
Steiner, S ;
Mohr, C ;
Pöhlmann, R ;
Luedi, P ;
Choi, SD ;
Wing, RA ;
Flavier, A ;
Gaffney, TD ;
Phillippsen, P .
SCIENCE, 2004, 304 (5668) :304-307
[8]   UNIPOLAR CELL DIVISIONS IN THE YEAST SACCHAROMYCES-CEREVISIAE LEAD TO FILAMENTOUS GROWTH - REGULATION BY STARVATION AND RAS [J].
GIMENO, CJ ;
LJUNGDAHL, PO ;
STYLES, CA ;
FINK, GR .
CELL, 1992, 68 (06) :1077-1090
[9]   Three-dimensional cryo-electron microscopy localization of EF2 in the Saccharomyces cerevisiae 80S ribosome at 17.5 Å resolution [J].
Gomez-Lorenzo, MG ;
Spahn, CMT ;
Agrawal, RK ;
Grassucci, RA ;
Penczek, P ;
Chakraburtty, K ;
Ballesta, JPG ;
Lavandera, JL ;
Garcia-Bustos, JF ;
Frank, J .
EMBO JOURNAL, 2000, 19 (11) :2710-2718
[10]   Ribosomes and translation [J].
Green, R ;
Noller, HF .
ANNUAL REVIEW OF BIOCHEMISTRY, 1997, 66 :679-716