Universal coding of integers and unbounded search trees

被引:14
作者
Ahlswede, R
Han, TS
Kobayashi, K
机构
[1] UNIV ELECTROCOMMUN,GRAD SCH INFORMAT SYST,CHOFU,TOKYO 182,JAPAN
[2] UNIV ELECTROCOMMUN,DEPT COMP SCI & INFORMAT MATH,CHOFU,TOKYO 182,JAPAN
关键词
universal coding; search trees; log-star function; Elias code; Stout code; Bentley-Yao tree;
D O I
10.1109/18.556122
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper we study universal coding problems for the integers, in particular, establish rather tight lower and upper bounds for the Elias omega code and other codes, In these bounds, the so-called log-star function plays a central role. Furthermore, we investigate unbounded search trees induced by these codes, including the Bentley-Yao search tree, We will reveal beautiful recursion structures latent in these search trees as well as in these codes. Finally, we introduce the modified log-star function to reveal the existance of better prefix codes than Elias omega code and other known codes.
引用
收藏
页码:669 / 682
页数:14
相关论文
共 7 条
[1]  
Bentley J. L., 1976, Information Processing Letters, V5, P82, DOI 10.1016/0020-0190(76)90071-5
[2]  
ELIAS P, 1975, IEEE T INFORM THEORY, V21, P194, DOI 10.1109/TIT.1975.1055349
[3]   ECONOMICAL ENCODING OF COMMAS BETWEEN STRINGS [J].
EVEN, S ;
RODEH, M .
COMMUNICATIONS OF THE ACM, 1978, 21 (04) :315-317
[4]   SOME EQUIVALENCES BETWEEN SHANNON ENTROPY AND KOLMOGOROV COMPLEXITY [J].
LEUNGYANCHEONG, SK ;
COVER, TM .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1978, 24 (03) :331-338
[5]  
Levenstein V.E., 1968, Problems of Cybernetics, V20, P173
[6]   A UNIVERSAL PRIOR FOR INTEGERS AND ESTIMATION BY MINIMUM DESCRIPTION LENGTH [J].
RISSANEN, J .
ANNALS OF STATISTICS, 1983, 11 (02) :416-431
[7]   IMPROVED PREFIX ENCODINGS OF THE NATURAL-NUMBERS [J].
STOUT, QF .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1980, 26 (05) :607-609