Highly porous 3D nanofiber scaffold using an electrospinning technique

被引:89
作者
Kim, GeunHyung [1 ]
Kim, WanDoo [1 ]
机构
[1] Korea Inst Machinery & Mat, Biomechatron Lab, Dept Future Technol, Taejon, South Korea
关键词
poly(epsilon-carprolactone); nanofiber; scaffold; chemical blowing agent; BIODEGRADABLE POLYMERS; MECHANICAL-PROPERTIES; FIBERS; CELLS; DEGRADATION; MATRICES; COLLAGEN; DESIGN; STARCH; FOAMS;
D O I
10.1002/jbm.b.30642
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
A successful 3D tissue-engineering scaffold must have a highly porous structure and good mechanical stability. High porosity and optimally designed pore size provide structural space for cell accommodation and migration and enable the exchange of nutrients between the scaffold and environment. Poly (epsilon-carprolactone) fibers were electrospun using an auxiliary electrode and chemical blowing agent (BA), and characterized according to porosity, pore size, and their mechanical properties. We also investigated the effect of the BA on the electrospinning processability. The growth characteristic of human dermal fibroblasts cells cultured in the webs showed the good adhesion with the blown web relative to a normal electrospun mat. The blown nanofiber web had good tensile properties and high porosity compared to a typical electrospun nanofiber scaffold. (c) 2006 Wiley Periodicals, Inc.
引用
收藏
页码:104 / 110
页数:7
相关论文
共 33 条
[1]  
Agrawal CM, 2001, J BIOMED MATER RES, V55, P141, DOI 10.1002/1097-4636(200105)55:2<141::AID-JBM1000>3.0.CO
[2]  
2-J
[3]  
Alberts B., 1994, MOL BIOL CELL
[4]   ELECTROSTATIC SPINNING OF ACRYLIC MICROFIBERS [J].
BAUMGARTEN, PK .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 1971, 36 (01) :71-+
[5]   Role of material surfaces in regulating bone and cartilage cell response [J].
Boyan, BD ;
Hummert, TW ;
Dean, DD ;
Schwartz, Z .
BIOMATERIALS, 1996, 17 (02) :137-146
[6]   Enhanced growth of animal and human endothelial cells on biodegradable polymers [J].
Chu, CFL ;
Lu, A ;
Liszkowski, M ;
Sipehia, R .
BIOCHIMICA ET BIOPHYSICA ACTA-GENERAL SUBJECTS, 1999, 1472 (03) :479-485
[7]   DEMINERALIZED ALLOGENEIC BONE-MATRIX FOR CARTILAGE REPAIR [J].
DAHLBERG, L ;
KREICBERGS, A .
JOURNAL OF ORTHOPAEDIC RESEARCH, 1991, 9 (01) :11-19
[8]  
DOSHI J, 1995, J ELECTROSTAT, V35, P151, DOI 10.1016/0304-3886(95)00041-8
[9]   NEOCARTILAGE FORMATION INVITRO AND INVIVO USING CELLS CULTURED ON SYNTHETIC BIODEGRADABLE POLYMERS [J].
FREED, LE ;
MARQUIS, JC ;
NOHRIA, A ;
EMMANUAL, J ;
MIKOS, AG ;
LANGER, R .
JOURNAL OF BIOMEDICAL MATERIALS RESEARCH, 1993, 27 (01) :11-23
[10]   Alternative tissue engineering scaffolds based on starch: processing methodologies, morphology, degradation and mechanical properties [J].
Gomes, ME ;
Godinho, JS ;
Tchalamov, D ;
Cunha, AM ;
Reis, RL .
MATERIALS SCIENCE & ENGINEERING C-BIOMIMETIC AND SUPRAMOLECULAR SYSTEMS, 2002, 20 (1-2) :19-26