A Novel Semi-biosynthetic Route for Artemisinin Production Using Engineered Substrate-Promiscuous P450BM3

被引:145
作者
Dietrich, Jeffrey A. [1 ,5 ]
Yoshikuni, Yasuo [1 ,5 ,6 ,7 ]
Fisher, Karl J. [8 ]
Woolard, Frank X. [8 ]
Ockey, Denise [8 ]
McPhee, Derek J. [8 ]
Renninger, Neil S. [8 ]
Chang, Michelle C. Y. [2 ,3 ,5 ]
Baker, David [6 ,7 ]
Keasling, Jay D. [1 ,2 ,4 ,5 ,9 ]
机构
[1] Univ Calif Berkeley, UCSF UCB Joint Grad Grp Bioengn, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Calif Inst Quantitat Biomed Res QB3, Berkeley, CA 94720 USA
[3] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA
[4] Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA
[5] Lawrence Berkeley Natl Lab, Synthet Biol Dept, Phys Biosci Div, Berkeley, CA 94710 USA
[6] Univ Washington, Dept Biochem, Seattle, WA 98195 USA
[7] Howard Hughes Med Inst, Seattle, WA 98195 USA
[8] Amyris Biotechnol Inc, Emeryville, CA 94208 USA
[9] Joint BioEnergy Inst, Emeryville, CA 94208 USA
关键词
ESCHERICHIA-COLI; DIHYDROARTEMISINIC ACID; ENZYME PROMISCUITY; MEVALONATE PATHWAY; IDENTIFICATION; BIOCATALYSIS; EPOXIDATION; EVOLUTION; SITE;
D O I
10.1021/cb900006h
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Production of fine chemicals from heterologous pathways in microbial hosts is frequently hindered by insufficient knowledge of the native metabolic pathway and its cognate enzymes; often the pathway is unresolved, and the enzymes lack detailed characterization. An alternative paradigm to using native pathways is de novo pathway design using well-characterized, substrate-promiscuous enzymes. We demonstrate this concept using P450(BM3) from Bacillus megaterium. Using a computer model, we illustrate how key P450(BM3) active site mutations enable binding of the non-native substrate amorphadiene. Incorporating these mutations into P450(BM3) enabled the selective oxidation of amorphadiene artemisinic-11S,12-epoxide, at titers of 250 mg L-1 in E coli. We also demonstrate high-yielding, selective transformations to dihydroartemisinic acid, the immediate precursor to the high-value antimalarial drug artemisinin.
引用
收藏
页码:261 / 267
页数:7
相关论文
共 36 条
[1]   ON THE CONVERSION OF DIHYDROARTEMISINIC ACID INTO ARTEMISININ [J].
ACTON, N ;
ROTH, RJ .
JOURNAL OF ORGANIC CHEMISTRY, 1992, 57 (13) :3610-3614
[2]   Identification of intermediates and enzymes involved in the early steps of artemisinin biosynthesis in Artemisia annua [J].
Bertea, CM ;
Freije, JR ;
van der Woude, H ;
Verstappen, FWA ;
Perk, L ;
Marquez, V ;
De Kraker, JW ;
Posthumus, MA ;
Jansen, BJM ;
de Groot, A ;
Franssen, MCR ;
Bouwmeester, HJ .
PLANTA MEDICA, 2005, 71 (01) :40-47
[3]   Dendrimer-metalloporphyrins: Synthesis and catalysis [J].
Bhyrappa, P ;
Young, JK ;
Moore, JS ;
Suslick, KS .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1996, 118 (24) :5708-5711
[4]   Protein engineering of Bacillus megaterium CYP102 -: The oxidation of polycyclic aromatic hydrocarbons [J].
Carmichael, AB ;
Wong, LL .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 2001, 268 (10) :3117-3125
[5]   Monoterpene biosynthesis pathway construction in Escherichia coli [J].
Carter, OA ;
Peters, RJ ;
Croteau, R .
PHYTOCHEMISTRY, 2003, 64 (02) :425-433
[6]   Engineering Escherichia coli for production of functionalized terpenoids using plant P450s [J].
Chang, Michelle C. Y. ;
Eachus, Rachel A. ;
Trieu, William ;
Ro, Dae-Kyun ;
Keasling, Jay D. .
NATURE CHEMICAL BIOLOGY, 2007, 3 (05) :274-277
[7]   Making artemisinin [J].
Covello, Patrick S. .
PHYTOCHEMISTRY, 2008, 69 (17) :2881-2885
[8]   What factors influence the ratio of C-H hydroxylation versus C=C epoxidation by a nonheme cytochrome P450 biomimetic? [J].
de Visser, Sam P. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2006, 128 (49) :15809-15818
[9]  
Delano W.L., 2002, Proteins Structure Function Bioinformatics, V30, P442
[10]   Laboratory evolution of a soluble, self-sufficient, highly active alkane hydroxylase [J].
Glieder, A ;
Farinas, ET ;
Arnold, FH .
NATURE BIOTECHNOLOGY, 2002, 20 (11) :1135-1139