Acetylation of mouse p53 at lysine 317 negatively regulates p53 apoptotic activities after DNA damage

被引:89
作者
Chao, Connie
Wu, Zhiqun
Mazur, Sharlyn J.
Borges, Helena
Rossi, Matteo
Lin, Tongxiang
Wang, Jean Y. J.
Anderson, Carl W.
Appella, Ettore
Xu, Yang
机构
[1] Univ Calif San Diego, Div Biol Sci, Mol Biol Sect, La Jolla, CA 92093 USA
[2] NCI, Cell Biol Lab, NIH, Bethesda, MD 20892 USA
[3] Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA
关键词
D O I
10.1128/MCB.00062-06
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Posttranslational modifications of p53, including phosphorylation and acetylation, play important roles in regulating p53 stability and activity. Mouse p53 is acetylated at lysine 317 by PCAF and at multiple lysine residues at the extreme carboxyl terminus by CBP/p300 in response to genotoxic and some nongenotoxic stresses. To determine the physiological roles of p53 acetylation at lysine 317, we introduced a Lys317-to-Arg (K317R) missense mutation into the endogenous p53 gene of mice. p53 protein accumulates to normal levels in p53(K317R) mouse embryonic fibroblasts (MEFs) and thymocytes after DNA damage. While p53-dependent gene expression is largely normal in p53(K317R) MEFs after various types of DNA damage, increased p53-dependent apoptosis was observed in p53(K317R) thymocytes, epithelial cells from the small intestine, and cells from the retina after ionizing radiation (IR) as well as in E1A/Ras-expressing MEFs after doxorubicin treatment. Consistent with these findings, p53-dependent expression of several proapoptotic genes was significantly increased in p53(K317R) thymocytes after IR. These findings demonstrate that acetylation at lysine 317 negatively regulates p53 apoptotic activities after DNA damage.
引用
收藏
页码:6859 / 6869
页数:11
相关论文
共 55 条
[1]   Post-translational modifications and activation of p53 by genotoxic stresses [J].
Appella, E ;
Anderson, CW .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 2001, 268 (10) :2764-2772
[2]   Acetylation of p53 activates transcription through recruitment of coactivators/histone acetyltransferases [J].
Barlev, NA ;
Liu, L ;
Chehab, NH ;
Mansfield, K ;
Harris, KG ;
Halazonetis, TD ;
Berger, SL .
MOLECULAR CELL, 2001, 8 (06) :1243-1254
[3]   p53 contains large unstructured regions in its native state [J].
Bell, S ;
Klein, C ;
Müller, L ;
Hansen, S ;
Buchner, J .
JOURNAL OF MOLECULAR BIOLOGY, 2002, 322 (05) :917-927
[4]   Radiation-induced apoptosis in developing mouse retina exhibits dose-dependent requirement for ATM phosphorylation of p53 [J].
Borges, HL ;
Chao, C ;
Xu, Y ;
Linden, R ;
Wang, JYJ .
CELL DEATH AND DIFFERENTIATION, 2004, 11 (05) :494-502
[5]   p53 ubiquitination: Mdm2 and beyond [J].
Brooks, CL ;
Gu, W .
MOLECULAR CELL, 2006, 21 (03) :307-315
[6]   RADIATION-INDUCED CELL-CYCLE ARREST COMPROMISED BY P21 DEFICIENCY [J].
BRUGAROLAS, J ;
CHANDRASEKARAN, C ;
GORDON, JI ;
BEACH, D ;
JACKS, T ;
HANNON, GJ .
NATURE, 1995, 377 (6549) :552-557
[7]   Amplification of PPM1D in human tumors abrogates p53 tumor-suppressor activity [J].
Bulavin, DV ;
Demidov, ON ;
Saito, S ;
Kauraniemi, P ;
Phillips, C ;
Amundson, SA ;
Ambrosino, C ;
Sauter, G ;
Nebreda, AR ;
Anderson, CW ;
Kallioniemi, A ;
Fornace, AJ ;
Appella, E .
NATURE GENETICS, 2002, 31 (02) :210-215
[8]   Two tandem and independent sub-activation domains in the amino terminus of p53 require the adaptor complex for activity [J].
Candau, R ;
Scolnick, DM ;
Darpino, P ;
Ying, CY ;
Halazonetis, TD ;
Berger, SL .
ONCOGENE, 1997, 15 (07) :807-816
[9]   p53 transcriptional activity is essential for p53-dependent apoptosis following DNA damage [J].
Chao, C ;
Saito, S ;
Kang, J ;
Anderson, CW ;
Appella, E ;
Xu, Y .
EMBO JOURNAL, 2000, 19 (18) :4967-4975
[10]   Phosphorylation of murine p53 at Ser-18 regulates the p53 responses to DNA damage [J].
Chao, C ;
Saito, S ;
Anderson, CW ;
Appella, E ;
Xu, Y .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (22) :11936-11941