Development of Ni catalysts for tar removal by steam gasification of biomass

被引:193
作者
Kimura, Takeo
Miyazawa, Tomohisa
Nishikawa, Jin
Kado, Shigeru
Okumura, Kazu
Miyao, Toshihiro
Naito, Shuichi
Kunimori, Kimio
Tomishige, Keiichi
机构
[1] Univ Tsukuba, Inst Mat Sci, Tsukuba, Ibaraki 3058573, Japan
[2] Tottori Univ, Fac Engn, Dept Mat Sci, Tottori 6808552, Japan
[3] Kanagawa Univ, Fac Engn, Dept Appl Chem, Kanazawa Ku, Yokohama, Kanagawa 2218686, Japan
关键词
steam gasification; steam reforming; biomass; Ni; CeO2; tar; coke; synthesis gas; hydrogen;
D O I
10.1016/j.apcatb.2006.08.007
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Catalytic performance of Ni/CeO2/Al2O3 catalysts prepared by a co-impregnation and a sequential impregnation method in steam gasification of real biomass (cedar wood) was investigated. Especially, Ni/CeO2/Al2O3 catalysts prepared by the co-impregnation method exhibited higher performance than Ni/Al2O3 and Ni/CeO2/Al2O3 prepared by the sequential impregnation method, and the catalysts gave lower yields of coke and tar, and higher yields of gaseous products. The Ni/CeO2/Al2O3 catalysts were characterized by thermogravimetric analysis, temperature-programmed reduction with H-2, transmission electron microscopy and extended X-ray absorption fine structure, and the results suggested that the interaction between Ni and CeO2 became stronger by the co-impregnation method than that by sequential method. Judging from both results of catalytic performance and catalyst characterization, it is found that the intimate interaction between Ni and CeO2 can play very important role on the steam gasification of biomass. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:160 / 170
页数:11
相关论文
共 34 条
[1]   Gasification of different biomasses in a dual-bed gasifier system combined with novel catalysts with high energy efficiency [J].
Asadullah, M ;
Miyazawa, T ;
Ito, SI ;
Kunimori, K ;
Yamada, M ;
Tomishige, K .
APPLIED CATALYSIS A-GENERAL, 2004, 267 (1-2) :95-102
[2]   Catalyst development for the gasification of biomass in the dual-bed gasifier [J].
Asadullah, M ;
Miyazawa, T ;
Ito, S ;
Kunimori, K ;
Yamada, M ;
Tomishige, K .
APPLIED CATALYSIS A-GENERAL, 2003, 255 (02) :169-180
[3]   Catalyst performance of Rh/CeO2/SiO2 in the pyrogasification of biomass [J].
Asadullah, M ;
Miyazawa, T ;
Ito, S ;
Kunimori, K ;
Tomishige, K .
ENERGY & FUELS, 2003, 17 (04) :842-849
[4]   Demonstration of real biomass gasification drastically promoted by effective catalyst [J].
Asadullah, M ;
Miyazawa, T ;
Ito, S ;
Kunimori, K ;
Tomishige, K .
APPLIED CATALYSIS A-GENERAL, 2003, 246 (01) :103-116
[5]   Energy efficient production of hydrogen and syngas from biomass: Development of low-temperature catalytic process for cellulose gasification [J].
Asadullah, M ;
Ito, SI ;
Kunimori, K ;
Yamada, M ;
Tomishige, K .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2002, 36 (20) :4476-4481
[6]   Biomass gasification to hydrogen and syngas at low temperature: Novel catalytic system using fluidized-bed reactor [J].
Asadullah, M ;
Ito, S ;
Kunimori, K ;
Yamada, M ;
Tomishige, K .
JOURNAL OF CATALYSIS, 2002, 208 (02) :255-259
[7]  
ASADULLAH M, 2001, CATAL COMMUN, V2, P63
[8]   Commercial steam reforming catalysts to improve biomass gasification with steam-oxygen mixtures. 2. Catalytic tar removal [J].
Aznar, MP ;
Caballero, MA ;
Gil, J ;
Martin, JA ;
Corella, J .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 1998, 37 (07) :2668-2680
[9]   CARBON DEPOSITION IN STEAM REFORMING AND METHANATION [J].
BARTHOLOMEW, CH .
CATALYSIS REVIEWS-SCIENCE AND ENGINEERING, 1982, 24 (01) :67-112
[10]   CATALYSIS IN THERMAL BIOMASS CONVERSION [J].
BRIDGWATER, AV .
APPLIED CATALYSIS A-GENERAL, 1994, 116 (1-2) :5-47