Three-dimensional anisotropic pressure free boundary equilibria

被引:50
作者
Cooper, W. A. [1 ]
Hirshman, S. P. [2 ]
Merkel, P. [3 ]
Graves, J. P. [1 ]
Kisslinger, J. [3 ]
Wobig, H. F. G. [3 ]
Narushima, Y. [4 ]
Okamura, S. [4 ]
Watanabe, K. Y. [4 ]
机构
[1] Ecole Polytech Fed Lausanne, Ctr Rech Phys Plasmas, Assoc Euratom Suisse, CH-1015 Lausanne, Switzerland
[2] Oak Ridge Natl Lab, Div Fus Energy, Oak Ridge, TN 37831 USA
[3] EURATOM, Max Planck Inst Plasmaphys, D-85748 Garching, Germany
[4] Natl Inst Nat Sci, Toki, Gifu 5095292, Japan
关键词
Free boundary equilibrium; Bi-Maxwellian; Pressure anisotropy; Green's function; Quasiaxisymmetry; MAGNETOHYDRODYNAMIC EQUILIBRIA; STABILITY; STELLARATOR; INSTABILITY; ALGORITHM; SYSTEMS; MODEL; LHD;
D O I
10.1016/j.cpc.2009.04.006
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Free boundary three-dimensional anisotropic pressure magnetohydrodynamic equilibria with nested magnetic flux surfaces are computed through the minimisation of the plasma energy functional W = integral(V) d(3)x[B-2/(2 mu(0)) + p(parallel to)/(Gamma - 1)]. The plasma-vacuum interface is varied to guarantee the continuity of the total pressure [p(perpendicular to) + B-2/(2 mu(0))] across it and the vacuum magnetic field must satisfy the Neumann bo undary condition that its component normal to this interfaced surface vanishes. The vacuum magnetic field corresponds to that driven by the plasma current and external coils plus the gradient of a potential function whose solution is obtained using a Green's function method. The energetic particle contributions to the pressure are evaluated analytically from the moments of the variant of a bi-Maxwellian distribution function that satisfies the constraint B . del F-h = 0. Applications to demonstrate the versatility and reliability of the numerical method employed have concentrated on high-beta off-axis energetic particle deposition with large parallel and perpendicular pressure anisotropies in a 2-field period quasiaxisymmetric stellarator reactor system. For large perpendicular pressure anisotropy, the hot particle component of the p(perpendicular to) distribution localises in the regions where the energetic particles are deposited. For large parallel pressure anisotropy. the pressures are more uniform around the flux surfaces. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:1524 / 1533
页数:10
相关论文
共 25 条
[1]   Anisotropic pressure bi-Maxwellian distribution function model for three-dimensional equilibria [J].
Cooper, W. A. ;
Graves, J. P. ;
Hirshman, S. P. ;
Yamaguchi, T. ;
Narushima, Y. ;
Okamura, S. ;
Sakakibara, S. ;
Suzuki, C. ;
Watanabe, K. Y. ;
Yamada, H. ;
Yamazaki, K. .
NUCLEAR FUSION, 2006, 46 (07) :683-698
[2]   3D MAGNETOHYDRODYNAMIC EQUILIBRIA WITH ANISOTROPIC PRESSURE [J].
COOPER, WA ;
HIRSHMAN, SP ;
MERAZZI, S ;
GRUBER, R .
COMPUTER PHYSICS COMMUNICATIONS, 1992, 72 (01) :1-13
[3]   INVERSE MOMENTS EQUILIBRIA FOR HELICAL ANISOTROPIC SYSTEMS [J].
COOPER, WA ;
HIRSHMAN, SP ;
DEPASSIER, MC .
PHYSICS OF FLUIDS, 1987, 30 (11) :3532-3539
[4]   Three-dimensional anisotropic pressure equilibria that model balanced tangential neutral beam injection effects [J].
Cooper, WA ;
Hirshman, SP ;
Yamaguchi, T ;
Narushima, Y ;
Okamura, S ;
Sakakibara, S ;
Suzuki, C ;
Watanabe, KY ;
Yamada, H ;
Yamazaki, K .
PLASMA PHYSICS AND CONTROLLED FUSION, 2005, 47 (03) :561-567
[5]   Magnetohydrodynamic stability of free-boundary quasi-axisymmetric stellarator equilibria with finite bootstrap current [J].
Cooper, WA ;
Margalet, SFI ;
Allfrey, SJ ;
Kisslinger, J ;
Wobig, HFG ;
Narushima, Y ;
Okamura, S ;
Suzuki, C ;
Watanabe, KY ;
Yamazaki, K ;
Isaev, MY .
FUSION SCIENCE AND TECHNOLOGY, 2004, 46 (02) :365-377
[6]   BEAM-INDUCED TENSOR PRESSURE TOKAMAK EQUILIBRIA [J].
COOPER, WA ;
BATEMAN, G ;
NELSON, DB ;
KAMMASH, T .
NUCLEAR FUSION, 1980, 20 (08) :985-992
[7]  
Fraysse V., 2003, Tech. Rep. TR/PA/03/3
[8]   VELOCITY GRADIENT INSTABILITY [J].
GRAD, H .
PHYSICS OF FLUIDS, 1966, 9 (03) :498-&
[9]  
Graves JP, 2006, AIP CONF PROC, V871, P350
[10]   ICRF FUSION REACTIVITY ENHANCEMENT IN TOKAMAKS [J].
HARVEY, RW ;
MCCOY, MG ;
KERBEL, GD ;
CHIU, SC .
NUCLEAR FUSION, 1986, 26 (01) :43-49