Stratum-by-stratum projection of light response attributes by retinal bipolar cells of Ambystoma

被引:42
作者
Pang, JJ [1 ]
Gao, F [1 ]
Wu, SM [1 ]
机构
[1] Baylor Coll Med, Cullen Eye Inst, Houston, TX 77030 USA
来源
JOURNAL OF PHYSIOLOGY-LONDON | 2004年 / 558卷 / 01期
关键词
D O I
10.1113/jphysiol.2004.063503
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
The visual system processes light images by projecting various representations of the visual world to segregated regions in the brain through parallel channels. Retinal bipolar cells constitute the first parallel channels that carry different light response attributes to different parts of the inner plexiform layer (IPL). Here we present a systematic study on detailed axonal morphology and light response characteristics of over 200 bipolar cells in dark-adapted salamander retinal slices by the whole-cell voltage clamp and Lucifer yellow fluorescence (with a confocal microscope) techniques. Four major groups of bipolar cells were identified according to the patterns of axon terminal ramification in the IPL: 36% were narrowly monostratified (whose axon terminals ramified in one of the 10 strata of the IPL), 27% were broadly monostratified, 19% were multistratified, and 18% bore pyramidally branching axons. By analysing the bipolar cells with narrowly monostratified axon terminals in each of the 10 strata of the IPL, we found that several key light response attributes are highly correlated with the strata in which the cells' axon terminals ramify. The 10 IPL strata appear to be the basic building blocks for attributes of light-evoked signal outputs in all bipolar cells, and several general stratum-by-stratum rules were identified by analysing the broadly monostratified, multistratified and pyramidally branching cells. These rules not only uncover mechanisms by which third-order retinal cells integrate and compute bipolar cell signals, but also shed considerable light on how bipolar cells in other vertebrates process visual information and how physiological signals may shape the morphology and projection of output synapses of visual neurones during development.
引用
收藏
页码:249 / 262
页数:14
相关论文
共 43 条
[1]   Origin of transient and sustained responses in ganglion cells of the retina [J].
Awatramani, GB ;
Slaughter, MM .
JOURNAL OF NEUROSCIENCE, 2000, 20 (18) :7087-7095
[2]  
Boycott B, 1999, INVEST OPHTH VIS SCI, V40, P1313
[3]   MORPHOLOGICAL CLASSIFICATION OF BIPOLAR CELLS OF THE PRIMATE RETINA [J].
BOYCOTT, BB ;
WASSLE, H .
EUROPEAN JOURNAL OF NEUROSCIENCE, 1991, 3 (11) :1069-1088
[4]   AN ALTERNATIVE PATHWAY FOR SIGNAL FLOW FROM ROD PHOTORECEPTORS TO GANGLION-CELLS IN MAMMALIAN RETINA [J].
DEVRIES, SH ;
BAYLOR, DA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (23) :10658-10662
[5]  
Dixon DB, 1997, J NEUROSCI, V17, P8945
[6]   CONTRAST SENSITIVITY OF RETINAL GANGLION CELLS OF CAT [J].
ENROTHCUGELL, C ;
ROBSON, JG .
JOURNAL OF PHYSIOLOGY-LONDON, 1966, 187 (03) :517-+
[7]   Light-evoked responses of bipolar cells in a mammalian retina [J].
Euler, T ;
Masland, RH .
JOURNAL OF NEUROPHYSIOLOGY, 2000, 83 (04) :1817-1829
[8]   IMMUNOCYTOCHEMICAL IDENTIFICATION OF CONE BIPOLAR CELLS IN THE RAT RETINA [J].
EULER, T ;
WASSLE, H .
JOURNAL OF COMPARATIVE NEUROLOGY, 1995, 361 (03) :461-478
[9]   STRUCTURAL BASIS FOR ON-CENTER AND OFF-CENTER RESPONSES IN RETINAL GANGLION-CELLS [J].
FAMIGLIETTI, EV ;
KOLB, H .
SCIENCE, 1976, 194 (4261) :193-195
[10]   NEURONAL ARCHITECTURE OF ON AND OFF PATHWAYS TO GANGLION-CELLS IN CARP RETINA [J].
FAMIGLIETTI, EV ;
KANEKO, A ;
TACHIBANA, M .
SCIENCE, 1977, 198 (4323) :1267-1269