Quantum algorithms for some hidden shift problems

被引:72
作者
van Dam, Wim [1 ]
Hallgren, Sean
Ip, Lawrence
机构
[1] Univ Calif Santa Barbara, Dept Comp Sci, Santa Barbara, CA 93106 USA
[2] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA
[3] MIT, Cambridge, MA 02139 USA
[4] Univ Calif Berkeley, Berkeley, CA 94720 USA
[5] HP Labs, Palo Alto, CA USA
[6] NEC Labs Amer Inc, Princeton, NJ 08540 USA
[7] Math Sci Res Inst, Berkeley, CA 94720 USA
[8] Google Inc, Mountain View, CA 94043 USA
[9] CALTECH, Inst Quantum Informat, Pasadena, CA 91125 USA
关键词
quantum computing; efficient algorithms; Legendre symbol;
D O I
10.1137/S009753970343141X
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Almost all of the most successful quantum algorithms discovered to date exploit the ability of the Fourier transform to recover subgroup structures of functions, especially periodicity. The fact that Fourier transforms can also be used to capture shift structure has received far less attention in the context of quantum computation. In this paper, we present three examples of "unknown shift" problems that can be solved efficiently on a quantum computer using the quantum Fourier transform. For one of these problems, the shifted Legendre symbol problem, we give evidence that the problem is hard to solve classically, by showing a reduction from breaking algebraically homomorphic cryptosystems. We also define the hidden coset problem, which generalizes the hidden shift problem and the hidden subgroup problem. This framework provides a unified way of viewing the ability of the Fourier transform to capture subgroup and shift structure.
引用
收藏
页码:763 / 778
页数:16
相关论文
共 38 条
[1]  
Abadi M., 1990, Journal of Cryptology, V2, P1, DOI 10.1007/BF02252866
[2]  
[Anonymous], 1997, ENCY MATH APPL
[3]  
[Anonymous], 1989, Algorithms for Discrete Fourier Transform and Convolution
[4]  
[Anonymous], 1996, Advances in Cryptology-CRYPTO 1996, 16th Annual International Cryptology Conference, Santa Barbara, California, USA, August 18-22, 1996, Proceedings
[5]  
[Anonymous], 1995, QUANTUM MEASUREMENTS
[6]  
Bach E., 1996, ALGORITHMIC NUMBER T
[7]  
Beals Robert, 1997, P STOC, P48, DOI DOI 10.1145/258533.258548
[8]   Strengths and weaknesses of quantum computing [J].
Bennett, CH ;
Bernstein, E ;
Brassard, G ;
Vazirani, U .
SIAM JOURNAL ON COMPUTING, 1997, 26 (05) :1510-1523
[9]   Quantum complexity theory [J].
Bernstein, E ;
Vazirani, U .
SIAM JOURNAL ON COMPUTING, 1997, 26 (05) :1411-1473
[10]   HOW TO GENERATE CRYPTOGRAPHICALLY STRONG SEQUENCES OF PSEUDO-RANDOM BITS [J].
BLUM, M ;
MICALI, S .
SIAM JOURNAL ON COMPUTING, 1984, 13 (04) :850-864