Escherichia coli K-12 undergoes adaptive evolution to achieve in silico predicted optimal growth

被引:611
作者
Ibarra, RU
Edwards, JS
Palsson, BO
机构
[1] Univ Calif San Diego, Dept Bioengn, La Jolla, CA 92093 USA
[2] Univ Delaware, Dept Chem Engn, Newark, DE 19716 USA
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
D O I
10.1038/nature01149
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Annotated genome sequences(1,2) can be used to reconstruct whole-cell metabolic networks(3-6). These metabolic networks can be modelled and analysed (computed) to study complex biological functions(7-11). In particular, constraints-based in silico models(12) have been used to calculate optimal growth rates on common carbon substrates, and the results were found to be consistent with experimental data under many but not all conditions(13,14). Optimal biological functions are acquired through an evolutionary process. Thus, incorrect predictions of in silico models based on optimal performance criteria may be due to incomplete adaptive evolution under the conditions examined. Escherichia coli K-12 MG1655 grows sub-optimally on glycerol as the sole carbon source. Here we show that when placed under growth selection pressure, the growth rate of E. coli on glycerol reproducibly evolved over 40 days, or about 700 generations, from a sub-optimal value to the optimal growth rate predicted from a whole-cell in silico model. These results open the possibility of using adaptive evolution of entire metabolic networks to realize metabolic states that have been determined a priori based on in silico analysis.
引用
收藏
页码:186 / 189
页数:4
相关论文
共 23 条
[1]   The complete genome sequence of Escherichia coli K-12 [J].
Blattner, FR ;
Plunkett, G ;
Bloch, CA ;
Perna, NT ;
Burland, V ;
Riley, M ;
ColladoVides, J ;
Glasner, JD ;
Rode, CK ;
Mayhew, GF ;
Gregor, J ;
Davis, NW ;
Kirkpatrick, HA ;
Goeden, MA ;
Rose, DJ ;
Mau, B ;
Shao, Y .
SCIENCE, 1997, 277 (5331) :1453-+
[2]   Flux analysis of underdetermined metabolic networks: The quest for the missing constraints [J].
Bonarius, HPJ ;
Schmid, G ;
Tramper, J .
TRENDS IN BIOTECHNOLOGY, 1997, 15 (08) :308-314
[3]   Metabolic modeling of microbial strains in silico [J].
Covert, MW ;
Schilling, CH ;
Famili, I ;
Edwards, JS ;
Goryanin, II ;
Selkov, E ;
Palsson, BO .
TRENDS IN BIOCHEMICAL SCIENCES, 2001, 26 (03) :179-186
[4]  
Drell Daniel, 2002, OMICS A Journal of Integrative Biology, V6, P3, DOI 10.1089/15362310252780799
[5]  
Edwards J., 1999, METABOLIC ENG
[6]   The Escherichia coli MG1655 in silico metabolic genotype:: Its definition, characteristics, and capabilities [J].
Edwards, JS ;
Palsson, BO .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (10) :5528-5533
[7]   Characterizing the metabolic phenotype: A phenotype phase plane analysis [J].
Edwards, JS ;
Ramakrishna, R ;
Palsson, BO .
BIOTECHNOLOGY AND BIOENGINEERING, 2002, 77 (01) :27-36
[8]   In silico predictions of Escherichia coli metabolic capabilities are consistent with experimental data [J].
Edwards, JS ;
Ibarra, RU ;
Palsson, BO .
NATURE BIOTECHNOLOGY, 2001, 19 (02) :125-130
[9]  
Fell D. A., 1996, UNDERSTANDING CONTRO
[10]   Mathematical modelling of metabolism [J].
Gombert, AK ;
Nielsen, J .
CURRENT OPINION IN BIOTECHNOLOGY, 2000, 11 (02) :180-186