Actin dynamics at sites of extracellular matrix degradation

被引:70
作者
Baldassarre, Massimiliano
Ayala, Inmaculada
Beznoussenko, Galina
Giacchetti, Giada
Machesky, Laura M.
Luini, Alberto
Buccione, Roberto
机构
[1] Consorzio Mario Negri Sud, Dept Cell Biol & Oncol, I-66030 Santa Maria Imbaro, Italy
[2] Univ Birmingham, Sch Biosci, Birmingham B15 2TT, W Midlands, England
基金
英国医学研究理事会;
关键词
invadopodia; actin comets; podosomes; extracellular matrix; invasion;
D O I
10.1016/j.ejcb.2006.08.003
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
The degradation of extracellular matrix (ECM) by proteases is crucial in physiological and pathological cell invasion alike. In vitro, degradation occurs at specific sites where invasive cells make contact with the ECM via specialized plasma membrane protrusions termed invadopodia. Here we present an extensive morpho-functional analysis of invadopodia actively engaged in ECM degradation and show that they are actin comet-based structures, not unlike the well-known bacteria-propelling actin tails. The relative mapping of the basic molecular components of invadopodia to actin tails is also provided. Finally, a live-imaging analysis of invadopodia highlights the intrinsic long-term stability of the structures coupled to a highly dynamic actin turnover. The results offer new insight into the tight coordination between signalling, actin remodelling and trafficking activities occurring at sites of focalized ECM degradation by invadopodia. In conclusion, invadopodia-associated actin comets are a striking example of consistently arising, spontaneous expression of actin-driven propulsion events that also represent a valuable experimental paradigm. (c) 2006 Elsevier GmbH. All rights reserved.
引用
收藏
页码:1217 / 1231
页数:15
相关论文
共 55 条
[1]   Invadopodia: A guided tour [J].
Ayala, I ;
Baldassarre, M ;
Caldieri, G ;
Buccione, R .
EUROPEAN JOURNAL OF CELL BIOLOGY, 2006, 85 (3-4) :159-164
[2]   Dynamin participates in focal extracellular matrix degradation by invasive cells [J].
Baldassarre, M ;
Pompeo, A ;
Beznoussenko, G ;
Castaldi, C ;
Cortellino, S ;
McNiven, MA ;
Luini, A ;
Buccione, R .
MOLECULAR BIOLOGY OF THE CELL, 2003, 14 (03) :1074-1084
[3]  
Ballestrem C, 1998, J CELL SCI, V111, P1649
[4]   Focalized proteolysis: Spatial and temporal regulation of extracellular matrix degradation at the cell surface [J].
Basbaum, CB ;
Werb, Z .
CURRENT OPINION IN CELL BIOLOGY, 1996, 8 (05) :731-738
[5]   Direct observation of dendritic actin filament networks nucleated by Arp2/3 complex and WASP/Scar proteins [J].
Blanchoin, L ;
Amann, KJ ;
Higgs, HN ;
Marchand, JB ;
Kaiser, DA ;
Pollard, TD .
NATURE, 2000, 404 (6781) :1007-1011
[6]   Co-localization of cortactin and phosphotyrosine identifies active invadopodia in human breast cancer cells [J].
Bowden, ET ;
Onikoyi, E ;
Slack, R ;
Myoui, A ;
Yoneda, T ;
Yamada, KM ;
Mueller, SC .
EXPERIMENTAL CELL RESEARCH, 2006, 312 (08) :1240-1253
[7]  
Bowden ET, 2001, METHOD CELL BIOL, V63, P613
[8]   Foot and mouth: Podosomes, invadopodia and circular dorsal ruffles [J].
Buccione, R ;
Orth, JD ;
McNiven, MA .
NATURE REVIEWS MOLECULAR CELL BIOLOGY, 2004, 5 (08) :647-657
[9]   Secrets of actin-based motility revealed by a bacterial pathogen [J].
Cameron, LA ;
Giardini, PA ;
Soo, FS ;
Theriot, JA .
NATURE REVIEWS MOLECULAR CELL BIOLOGY, 2000, 1 (02) :110-119
[10]   Specialized surface protrusions of invasive cells, invadopodia and lamellipodia, have differential MT1-MMP, MMP-2, and TIMP-2 localization [J].
Chen, WT ;
Wang, JY .
INHIBITION OF MATRIX METALLOPROTEINASES: THERAPEUTIC APPLICATIONS, 1999, 878 :361-371