HMGB1 signals through toll-like receptor (TLR) 4 and TLR2

被引:732
作者
Yu, Man
Wang, Haichao
Ding, Aihao
Golenbock, Douglas T.
Latz, Eicke
Czura, Christopher J.
Fenton, Matthew J.
Tracey, Kevin J.
Yang, Huan [1 ]
机构
[1] Feinstein Inst Med Res, Labs Biomed Sci, Manhasset, NY 11030 USA
[2] Cornell Univ, New York, NY USA
[3] Univ Massachusetts, Sch Med, Dept Immunol & Infect Dis, Worcester, MA USA
[4] Univ Maryland, Sch Med, Div Pulm & Crit Care, Baltimore, MD 21201 USA
来源
SHOCK | 2006年 / 26卷 / 02期
关键词
HMGB1; TLR2; TLR4; signal transduction; receptor;
D O I
10.1097/01.shk.0000225404.51320.82
中图分类号
R4 [临床医学];
学科分类号
1002 ; 100602 ;
摘要
In response to bacterial endotoxin (e.g., LPS) or endogenous proinflammatory cytokines (e.g., TNF and IL-1 beta), innate immune cells release HMGB1, a late cytokine mediator of lethal endotoxemia and sepsis. The delayed kinetics of HMGB1 release makes it an attractive therapeutic target with a wider window of opportunity for the treatment of lethal systemic inflammation. However, the receptor(s) responsible for HMGB1-mediated production of proinflammatory cytokines has not been well characterized. Here we demonstrate that in human whole blood, neutralizing antibodies against Toll-like receptor 4 (TLR4, but not TLR2 or receptor for advanced glycation end product) dose-dependently attenuate HMGB1-induced IL-8 release. Similarly, in primary human macrophages, HMGB1-induced TNF release is dose-dependently inhibited by anti-TLR4 antibodies. In primary macrophages from knockout mice, HMGB1 activates significantly less TNF release in cells obtained from MyD88 and TLR4 knockout mice as compared with cells from TLR2 knockout and wild-type controls. However, in human embryonic kidney 293 cells transfected with TLR2 or TLR4, HMGB1 effectively induces IL-8 release only from TLR2 overexpressing cells. Consistently, anti-TLR2 antibodies dose-dependently attenuate HMGB1-induced IL-8 release in human embryonic kidney/TLR2-expressing cells and markedly reduce HMGB1 cell surface binding on murine macrophage-like RAW 264.7 cells. Taken together, our data suggest that there is a differential usage of TLR2 and TLR4 in HMGB1 signaling in primary cells and in established cell lines, adding complexity to studies of HMGB1 signaling which was not previously expected.
引用
收藏
页码:174 / 179
页数:6
相关论文
共 32 条
[1]   Cutting edge: HMG-1 as a mediator of acute lung inflammation [J].
Abraham, E ;
Arcaroli, J ;
Carmody, A ;
Wang, HC ;
Tracey, KJ .
JOURNAL OF IMMUNOLOGY, 2000, 165 (06) :2950-2954
[2]   Toll-like receptors in the induction of the innate immune response [J].
Aderem, A ;
Ulevitch, RJ .
NATURE, 2000, 406 (6797) :782-787
[3]   HMGB-1, a DNA-binding protein with cytokine activity, induces brain TNF and IL-6 production, and mediates anorexia and taste aversion [J].
Agnello, D ;
Wang, HC ;
Yang, H ;
Tracey, KJ ;
Ghezzi, P .
CYTOKINE, 2002, 18 (04) :231-236
[4]   High mobility group 1 protein (HMG-1) stimulates proinflammatory cytokine synthesis in human monocytes [J].
Andersson, U ;
Wang, HC ;
Palmblad, K ;
Aveberger, AC ;
Bloom, O ;
Erlandsson-Harris, H ;
Janson, A ;
Kokkola, R ;
Zhang, MH ;
Yang, H ;
Tracey, KJ .
JOURNAL OF EXPERIMENTAL MEDICINE, 2000, 192 (04) :565-570
[5]   The interleukin-1 receptor/Toll-like receptor superfamily: signal generators for pro-inflammatory interleukins and microbial products [J].
Bowie, A ;
O'Neill, LAJ .
JOURNAL OF LEUKOCYTE BIOLOGY, 2000, 67 (04) :508-514
[6]   The high mobility group (HMG) boxes of the nuclear protein HMG1 induce chemotaxis and cytoskeleton reorganization in rat smooth muscle cells [J].
Degryse, B ;
Bonaldi, T ;
Scaffidi, P ;
Müller, S ;
Resnati, M ;
Sanvito, F ;
Arrigoni, G ;
Bianchi, ME .
JOURNAL OF CELL BIOLOGY, 2001, 152 (06) :1197-1206
[7]  
Delude RL, 1998, J IMMUNOL, V161, P3001
[8]   THE RECEPTOR FOR ADVANCED GLYCATION END-PRODUCTS (RAGE) IS A CELLULAR-BINDING SITE FOR AMPHOTERIN - MEDIATION OF NEURITE OUTGROWTH AND COEXPRESSION OF RAGE AND AMPHOTERIN IN THE DEVELOPING NERVOUS-SYSTEM [J].
HORI, O ;
BRETT, J ;
SLATTERY, T ;
CAO, R ;
ZHANG, JH ;
CHEN, JX ;
NAGASHIMA, M ;
LUNDH, ER ;
VIJAY, S ;
NITECKI, D ;
MORSER, J ;
STERN, D ;
SCHMIDT, AM .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (43) :25752-25761
[9]   Amphoterin as an extracellular regulator of cell motility: from discovery to disease [J].
Huttunen, HJ ;
Rauvala, H .
JOURNAL OF INTERNAL MEDICINE, 2004, 255 (03) :351-366
[10]  
Huttunen HJ, 2002, CANCER RES, V62, P4805