Phenol degradation in microbial fuel cells

被引:244
作者
Luo, Haiping [1 ]
Liu, Guangli [1 ]
Zhang, Renduo [1 ]
Jin, Song [2 ]
机构
[1] Sun Yat Sen Univ, Sch Environm Sci & Engn, Guangzhou 510275, Guangdong, Peoples R China
[2] Western Res Inst, Laramie, WY 82072 USA
关键词
Electricity generation; Microbial fuel cell; MFC; Phenol degradation; Biodegradation; PROTON-EXCHANGE MEMBRANE; ELECTRICITY-GENERATION; WASTE-WATER; HARVESTING ELECTRICITY; GLUCOSE; MICROORGANISMS; TECHNOLOGY; INHIBITION; ELECTRODES; OXIDATION;
D O I
10.1016/j.cej.2008.07.011
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Microbial fuel cell (MFC) has gained a great attention attributable to its ability in generating electricity directly from and potentially enhancing biodegradation of contaminants. In this study, MFCs using phenol or glucose-phenol mixture as the substrate (fuel) were designed to investigate the biodegradation of phenol. In an aqueous air cathode MFC using phenol (400 mg/L) as the sole fuel, electricity was generated during the phenol degradation. The degradation rates of phenol in the MFC increased about 15% as compared to the open-circuit control. Further experiments were conducted by using a graphite-packed MFC with a ferricyanide cathode. When phenol served as the sole fuel, the peak voltage output was obtained when 90% of phenol was depleted. A unique pattern of twin voltage peaks was observed when phenol-glucose mixture was used as the fuel. At the occurrence of the first and second voltage peaks, phenol was degraded by 20% and 90%, respectively, suggesting a preferential sequence in substrate consumption. The maximal power densities were 9.1 and 28.3 W/m(3) for MFCs using phenol and glucose-phenol mixture as the fuel, respectively. Co-occurring with electricity generation, the degradation efficiencies of phenol in all the MFCs reached above 95% within 60 h. The results indicate that the MFC can enhance biodegradation of recalcitrant contaminants such as phenol in practical applications. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:259 / 264
页数:6
相关论文
共 35 条
[1]   Electrode-reducing microorganisms that harvest energy from marine sediments [J].
Bond, DR ;
Holmes, DE ;
Tender, LM ;
Lovley, DR .
SCIENCE, 2002, 295 (5554) :483-485
[2]   Electricity production by Geobacter sulfurreducens attached to electrodes [J].
Bond, DR ;
Lovley, DR .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2003, 69 (03) :1548-1555
[3]   Biodegradation of phenols in a sandstone aquifer under aerobic conditions and mixed nitrate and iron reducing conditions [J].
Broholm, MM ;
Arvin, E .
JOURNAL OF CONTAMINANT HYDROLOGY, 2000, 44 (3-4) :239-273
[4]   Electricity production from twelve monosaccharides using microbial fuel cells [J].
Catal, Tunc ;
Li, Kaichang ;
Bermek, Hakan ;
Liu, Hong .
JOURNAL OF POWER SOURCES, 2008, 175 (01) :196-200
[5]   Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells [J].
Chaudhuri, SK ;
Lovley, DR .
NATURE BIOTECHNOLOGY, 2003, 21 (10) :1229-1232
[6]   Anaerobic treatment of phenol in wastewater under thermophilic condition [J].
Fang, HHP ;
Liang, DW ;
Zhang, T ;
Liu, Y .
WATER RESEARCH, 2006, 40 (03) :427-434
[7]   SUBSTRATE INHIBITION KINETICS - PHENOL DEGRADATION BY PSEUDOMONAS-PUTIDA [J].
HILL, GA ;
ROBINSON, CW .
BIOTECHNOLOGY AND BIOENGINEERING, 1975, 17 (11) :1599-1615
[8]   Microbial communities associated with electrodes harvesting electricity from a variety of aquatic sediments [J].
Holmes, DE ;
Bond, DR ;
O'Neill, RA ;
Reimers, CE ;
Tender, LR ;
Lovley, DR .
MICROBIAL ECOLOGY, 2004, 48 (02) :178-190
[9]   THE INFLUENCE OF GLUCOSE SUPPLEMENT ON THE DEGRADATION OF CATECHOL [J].
HWANG, PC ;
CHENG, SS .
WATER SCIENCE AND TECHNOLOGY, 1991, 23 (7-9) :1201-1209
[10]   Enrichment of microbial community generating electricity using a fuel-cell-type electrochemical cell [J].
Kim, BH ;
Park, HS ;
Kim, HJ ;
Kim, GT ;
Chang, IS ;
Lee, J ;
Phung, NT .
APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2004, 63 (06) :672-681