Tissue-specific spatial organization of genomes

被引:288
作者
Parada, LA
McQueen, PG
Misteli, T [1 ]
机构
[1] NCI, NIH, Bethesda, MD 20892 USA
[2] NIH, Math & Stat Lab, Div Computat Biol, Ctr Informat Technol, Bethesda, MD 20892 USA
关键词
D O I
10.1186/gb-2004-5-7-r44
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Background: Genomes are organized in vivo in the form of chromosomes. Each chromosome occupies a distinct nuclear subvolume in the form of a chromosome territory. The spatial positioning of chromosomes within the interphase nucleus is often nonrandom. It is unclear whether the nonrandom spatial arrangement of chromosomes is conserved among tissues or whether spatial genome organization is tissue-specific. Results: Using two-dimensional and three-dimensional fluorescence in situ hybridization we have carried out a systematic analysis of the spatial positioning of a subset of mouse chromosomes in several tissues. We show that chromosomes exhibit tissue-specific organization. Chromosomes are distributed tissue-specifically with respect to their position relative to the center of the nucleus and also relative to each other. Subsets of chromosomes form distinct types of spatial clusters in different tissues and the relative distance between chromosome pairs varies among tissues. Consistent with the notion that nonrandom spatial proximity is functionally relevant in determining the outcome of chromosome translocation events, we find a correlation between tissue-specific spatial proximity and tissue-specific translocation prevalence. Conclusions: Our results demonstrate that the spatial organization of genomes is tissue-specific and point to a role for tissue-specific spatial genome organization in the formation of recurrent chromosome arrangements among tissues.
引用
收藏
页数:9
相关论文
共 36 条
[1]   Nuclear structure and gene activity in human differentiated cells [J].
Bártová, E ;
Kozubek, S ;
Jirsová, P ;
Kozubek, M ;
Gajová, H ;
Lukásová, E ;
Skalníková, M ;
Ganová, A ;
Koutná, I ;
Hausmann, M .
JOURNAL OF STRUCTURAL BIOLOGY, 2002, 139 (02) :76-89
[2]   The spatial organization of human chromosomes within the nuclei of normal and emerin-mutant cells [J].
Boyle, S ;
Gilchrist, S ;
Bridger, JM ;
Mahy, NL ;
Ellis, JA ;
Bickmore, WA .
HUMAN MOLECULAR GENETICS, 2001, 10 (03) :211-219
[3]   Re-modelling of nuclear architecture in quiescent and senescent human fibroblasts [J].
Bridger, JM ;
Boyle, S ;
Kill, IR ;
Bickmore, WA .
CURRENT BIOLOGY, 2000, 10 (03) :149-152
[4]   Association of transcriptionally silent genes with Ikaros complexes at centromeric heterochromatin [J].
Brown, KE ;
Guest, SS ;
Smale, ST ;
Hahm, K ;
Merkenschlager, M ;
Fisher, AG .
CELL, 1997, 91 (06) :845-854
[5]   Tissue-specific nuclear architecture and gene expession regulated by SATB1 [J].
Cai, ST ;
Han, HJ ;
Kohwi-Shigematsu, T .
NATURE GENETICS, 2003, 34 (01) :42-51
[6]   Predicting three-dimensional genome structure from transcriptional activity [J].
Cook, PR .
NATURE GENETICS, 2002, 32 (03) :347-352
[7]   Chromosomes are predominantly located randomly with respect to each other in interphase human cells [J].
Cornforth, MN ;
Greulich-Bode, KM ;
Loucas, BD ;
Arsuaga, J ;
Vázquez, M ;
Sachs, RK ;
Brückner, M ;
Molls, M ;
Hahnfeldt, P ;
Hlatky, L ;
Brenner, DJ .
JOURNAL OF CELL BIOLOGY, 2002, 159 (02) :237-244
[8]   Inheritance of gene density-related higher order chromatin arrangements in normal and tumor cell nuclei [J].
Cremer, M ;
Küpper, K ;
Wagler, B ;
Wizelman, L ;
von Hase, J ;
Weiland, Y ;
Kreja, L ;
Diebold, J ;
Speicher, MR ;
Cremer, T .
JOURNAL OF CELL BIOLOGY, 2003, 162 (05) :809-820
[9]   Non-random radial higher-order chromatin arrangements in nuclei of diploid human cells [J].
Cremer, M ;
von Hase, J ;
Volm, T ;
Brero, A ;
Kreth, G ;
Walter, J ;
Fischer, C ;
Solovei, I ;
Cremer, C ;
Cremer, T .
CHROMOSOME RESEARCH, 2001, 9 (07) :541-567
[10]   Chromosome territories, nuclear architecture and gene regulation in mammalian cells [J].
Cremer, T ;
Cremer, C .
NATURE REVIEWS GENETICS, 2001, 2 (04) :292-301