Spatial distribution of deepwater seagrass in the inter-reef lagoon of the Great Barrier Reef World Heritage Area

被引:45
作者
Coles, Robert [1 ]
McKenzie, Len [1 ]
De'ath, Glenn [2 ]
Roelofs, Anthony [1 ]
Long, Warren Lee [3 ]
机构
[1] No Fisheries Ctr, Brisbane, Qld 4870, Australia
[2] Australian Inst Marine Sci, Townsville, Qld 4810, Australia
[3] Wetlands Int Oceania, Kingston, ACT 2604, Australia
关键词
Seagrass; Trawling; Depth; Marine park; Halophila spp; COMMERCIAL PENAEID PRAWNS; HALOPHILA-DECIPIENS; NORTHERN QUEENSLAND; HYDROCHARITACEAE; PRODUCTIVITY; RESPONSES; HABITATS; PATTERN;
D O I
10.3354/meps08197
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
Seagrasses in waters deeper than 15 m in the Great Barrier Reef World Heritage Area (adjacent to the Queensland coast) were surveyed using a camera and dredge (towed for a period of 4 to 6 min); 1426 sites were surveyed, spanning from 10 to 25 degrees S, and from inshore to the edge of the reef (out to 120 nautical miles from the coast). At each site seagrass presence, species, and biomass were recorded; together with depth, sediment, secchi, algae presence, epibenthos, and proximity to reefs. Seagrasses in the study area extend down to water depths of 61 m, and are difficult to map other than by generating distributions from point source data. Statistical modeling of the seagrass distribution suggests 40000 km(2) of the sea bottom has a probability of some seagrass being present. There is strong spatial variation driven in part by the constraint of the Great Barrier Reef's long, thin shape, and by physical processes associated with the land and ocean. All seagrass species found were from the genus Halophila. Probability distributions were mapped for the 4 most common species: Halophila ovalis, H. spinulosa, H. decipiens, and H. tricostata. Distributions of H. ovalis and H. spinulosa show strong depth and sediment effects, whereas H. decipiens and H. tricostata are only weakly correlated with environmental variables, but show strong spatial patterns. Distributions of all species are correlated most closely with water depth, the proportion of medium-sized sediment, and visibility measured by Secchi depth. These 3 simple characteristics of the environment correctly predict the presence of seagrass 74% of the time. The results are discussed in terms of environmental dynamics, management of the Great Barrier Reef province, and the potential for using surrogates to predict the presence of seagrass habitats.
引用
收藏
页码:57 / 68
页数:12
相关论文
共 46 条
[1]  
[Anonymous], 2006, R LANG ENV STAT COMP
[2]  
[Anonymous], 2007, AIMS/CSIRO/QM/QDPI CRC Reef Research Task Final Report).
[3]  
Blakemore L.C., 1987, NZ SOIL BUREAU SCI R, V80, P72
[4]  
Carruthers TJB, 2002, B MAR SCI, V71, P1153
[5]  
CHURCH JA, 1987, AUST J MAR FRESH RES, V38, P671
[6]  
Coles R, 2001, GLOBAL SEAGRASS RESEARCH METHODS, P1, DOI 10.1016/B978-044450891-1/50001-3
[7]  
COLES RG, 1993, AUST J MAR FRESH RES, V44, P193
[8]  
COLES RG, 1987, AUST J MAR FRESH RES, V38, P103
[9]  
COLES RG, 2002, RES PUBL GREAT BARRI, V72
[10]  
COLES RG, 2008, PR083576 DEP PRIM IN