Thiol alkylation inhibits the mitogenic effects of platelet-derived growth factor and renders it proapoptotic via activation of STATs and p53 and induction of expression of caspase1 and p21waf1/cip1

被引:23
作者
Bhanoori, M
Yellaturu, CR
Ghosh, SK
Hassid, A
Jennings, LK
Rao, GN
机构
[1] Univ Tennessee, Hlth Sci Ctr, Dept Physiol, Memphis, TN 38163 USA
[2] Univ Tennessee, Ctr Hlth Sci, Ctr Vasc Biol, Memphis, TN 38163 USA
关键词
apoptosis; cell growth; protein tyrosine phosphatases; protein tyrosine kinases; thiols; transcription factors;
D O I
10.1038/sj.onc.1206065
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Thiols provide the major intracellular redox milieu and can undergo reversible oxidation and reduction. To understand the role of thiols in redox signaling events, we have studied the effect of N-ethylmaleimide, a specific thiol alkylating agent, on platelet-derived growth factor-BB (PDGF-BB)-induced mitogenesis in vascular smooth muscle cells (VSMC). Thiol alkylation inhibited PDGF-BB-induced expression of the Fos and Jun family proteins and AP-1 activity in VSMC. Thiol alkylation also inhibited PDGF-BB-induced expression of cyclin A and growth in these cells. In contrast, thiol alkylation enhanced and sustained the effect of PDGF-BB on the activation of the Jak STAT pathway, and this event was correlated with inhibition of protein tyrosine phosphatase 1B activity. Thiol alkylation via inducing the expression of p21(waf1/cip1) in a STAT1- and p53-dependent manner antagonized the downregulation of this cell cycle inhibitory molecule by PDGF-BB. The inhibition of AP-1 and activation of STATs, particularly STAT1, by thiol alkylation correlated with increased production of active caspase 1 and apoptosis in VSMC. Together, these findings suggest a role for thiols in mediating mitogenic and/or apoptotic signaling events in VSMC. These results also show that a sustained change in the intracellular thiol redox state can convert a mitogen into a death promoter.
引用
收藏
页码:117 / 130
页数:14
相关论文
共 71 条
[1]   Multiple classes of sulfhydryls modulate the skeletal muscle Ca2+ release channel [J].
Aghdasi, B ;
Zhang, JZ ;
Wu, YL ;
Reid, MB ;
Hamilton, SL .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (06) :3739-3748
[2]   OXIDANTS, ANTIOXIDANTS, AND THE DEGENERATIVE DISEASES OF AGING [J].
AMES, BN ;
SHIGENAGA, MK ;
HAGEN, TM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1993, 90 (17) :7915-7922
[3]   Redox potentials of glutaredoxins and other thiol-disulfide oxidoreductases of the thioredoxin superfamily determined by direct protein-protein redox equilibria [J].
Åslund, F ;
Berndt, KD ;
Holmgren, A .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (49) :30780-30786
[4]   Epidermal growth factor (EGF)-induced generation of hydrogen peroxide - Role in EGF receptor-mediated tyrosine phosphorylation [J].
Bae, YS ;
Kang, SW ;
Seo, MS ;
Baines, IC ;
Tekle, E ;
Chock, PB ;
Rhee, SG .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (01) :217-221
[5]   Redox regulation of p53 during hypoxia [J].
Chandel, NS ;
Vander Heiden, MG ;
Thompson, CB ;
Schumacker, PT .
ONCOGENE, 2000, 19 (34) :3840-3848
[6]  
Chen B, 2000, CANCER RES, V60, P3290
[7]   CLONING OF A CDNA FOR A MAJOR HUMAN PROTEIN-TYROSINE-PHOSPHATASE [J].
CHERNOFF, J ;
SCHIEVELLA, AR ;
JOST, CA ;
ERIKSON, RL ;
NEEL, BG .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1990, 87 (07) :2735-2739
[8]  
Chernoff J, 1999, J CELL PHYSIOL, V180, P173
[9]   Activation of the STAT signaling pathway can cause expression of caspase 1 and apoptosis [J].
Chin, YE ;
Kitagawa, M ;
Kuida, K ;
Flavell, RA ;
Fu, XY .
MOLECULAR AND CELLULAR BIOLOGY, 1997, 17 (09) :5328-5337
[10]   Cell growth arrest and induction of cyclin-dependent kinase inhibitor p21(WAF1/CIP1) mediated by STAT1 [J].
Chin, YE ;
Kitagawa, M ;
Su, WCS ;
You, ZH ;
Iwamoto, Y ;
Fu, XY .
SCIENCE, 1996, 272 (5262) :719-722