Optimizing the saccharification of sugar cane bagasse using dilute phosphoric acid followed by fungal cellulases

被引:91
作者
Geddes, C. C. [1 ]
Peterson, J. J. [1 ]
Roslander, C. [2 ]
Zacchi, G. [2 ]
Mullinnix, M. T. [1 ]
Shanmugam, K. T. [1 ]
Ingram, L. O. [1 ]
机构
[1] Univ Florida, Dept Microbiol & Cell Sci, Gainesville, FL 32611 USA
[2] Lund Univ, Dept Chem Engn, S-22100 Lund, Sweden
关键词
Ethanol; Lignocellulose; Pre-treatment; Xylose; ETHANOLOGENIC ESCHERICHIA-COLI; CORN STOVER; ENZYMATIC-HYDROLYSIS; STEAM PRETREATMENT; SULFURIC-ACID; FERMENTATION; FUEL; DETOXIFICATION; HEMICELLULOSE; BIOETHANOL;
D O I
10.1016/j.biortech.2009.09.070
中图分类号
S2 [农业工程];
学科分类号
0828 ;
摘要
A low level of phosphoric acid (1% w/w on dry bagasse basis, 160 degrees C and above, 10 min) was shown to effectively hydrolyze the hemicellulose in sugar cane bagasse into monomers with minimal side reactions and to serve as an effective pre-treatment for the enzymatic hydrolysis of cellulose. Up to 45% of the remaining water-insoluble solids (WIS) was digested to sugar monomers by a low concentration of Biocellulase W (0.5 filter paper unit/g WIS) supplemented with beta-glucosidase, although much higher levels of cellulase (100-fold) were required for complete hydrolysis. After neutralization and nutrient addition, phosphoric acid syrups of hemicellulose sugars were fermented by ethanologenic Escherichia coli LY160 without further purification. Fermentation of these syrups was preceded by a lag that increased with increased pre-treatment temperature. Further improvements in organisms and optimization of steam treatments may allow the co-fermentation of sugars derived from hemicellulose and cellulose, eliminating need for liquid-solid separation, sugar purification, and separate fermentations. (C) 2009 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1851 / 1857
页数:7
相关论文
共 44 条
[1]   Increased tolerance and conversion of inhibitors in lignocellulosic hydrolysates by Saccharomyces cerevisiae [J].
Almeida, Jodo R. M. ;
Modig, Tobias ;
Petersson, Anneli ;
Hahn-Hagerdal, Barbel ;
Liden, Gunnar ;
Gorwa-Grauslund, Marie F. .
JOURNAL OF CHEMICAL TECHNOLOGY AND BIOTECHNOLOGY, 2007, 82 (04) :340-349
[2]   KINETIC-STUDIES OF CORN STOVER SACCHARIFICATION USING SULFURIC-ACID [J].
BHANDARI, N ;
MACDONALD, DG ;
BAKHSHI, NN .
BIOTECHNOLOGY AND BIOENGINEERING, 1984, 26 (04) :320-327
[3]   Cellulase kinetics as a function of cellulose pretreatment [J].
Bommarius, Andreas S. ;
Katona, Adrian ;
Cheben, Sean E. ;
Patel, Arpit S. ;
Ragauskas, Arthur J. ;
Knudson, Kristina ;
Pu, Yunqiao .
METABOLIC ENGINEERING, 2008, 10 (06) :370-381
[4]   Substrate pretreatment: The key to effective enzymatic hydrolysis of lignocellulosics? [J].
Chandra, R. P. ;
Bura, R. ;
Mabee, W. E. ;
Berlin, A. ;
Pan, X. ;
Saddler, J. N. .
BIOFUELS, 2007, 108 :67-93
[5]   PRETREATMENT CATALYST EFFECTS AND THE COMBINED SEVERITY PARAMETER [J].
CHUM, HL ;
JOHNSON, DK ;
BLACK, SK ;
OVEREND, RP .
APPLIED BIOCHEMISTRY AND BIOTECHNOLOGY, 1990, 24-5 :1-14
[6]   Bioethanol from cellulosic materials: A renewable motor fuel from biomass [J].
Demirbas, A .
ENERGY SOURCES, 2005, 27 (04) :327-337
[7]   WOOD HYDROLYZATE TREATMENTS FOR IMPROVED FERMENTATION OF WOOD SUGARS TO 2,3-BUTANEDIOL [J].
FRAZER, FR ;
MCCASKEY, TA .
BIOMASS, 1989, 18 (01) :31-42
[8]   Pretreatment of lignocellulosic materials for efficient bioethanol production [J].
Galbe, Mats ;
Zacchi, Guido .
BIOFUELS, 2007, 108 :41-65
[9]   Study of the hydrolysis of sugar cane bagasse using phosphoric acid [J].
Gámez, S ;
González-Cabriales, JJ ;
Ramírez, JA ;
Garrote, G ;
Vázquez, M .
JOURNAL OF FOOD ENGINEERING, 2006, 74 (01) :78-88
[10]   Manufacture of fermentable sugar solutions from sugar cane bagasse hydrolyzed with phosphoric acid at atmospheric pressure [J].
Gámez, S ;
Ramírez, JA ;
Garrote, G ;
Vázquez, MV .
JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 2004, 52 (13) :4172-4177