Apoptosis: biochemical aspects and clinical implications

被引:185
作者
Kiechle, FL [1 ]
Zhang, XB [1 ]
机构
[1] William Beaumont Hosp, Dept Clin Pathol, Royal Oak, MI 48073 USA
关键词
apoptosis; programmed cell death; nitric acid; transcription factors; Hoechst; 33342; 33258; bisbenzimides; topoisomerase I; E2F-1; caspase; replication protein A; NF kappa B; STAT5; p53; TATA box binding protein; TFIID; TFIIIC;
D O I
10.1016/S0009-8981(02)00297-8
中图分类号
R446 [实验室诊断]; R-33 [实验医学、医学实验];
学科分类号
1001 ;
摘要
Apoptosis and necrosis represent two distinct types of cell death. Apoptosis possesses unique morphologic and biochemical features which distinguish this mechanism of programmed cell death from necrosis. Extrinsic apoptotic cell death is receptor-linked and initiates apoptosis by activating caspase 8. Intrinsic apoptotic cell death is mediated by the release of cytochrome c from mitochondrial and initiates apoptosis by activating caspase 3. Cancer chemotherapy utilizes apoptosis to eliminate tumor cells. Agents which bind to the minor groove of DNA, like camptothecin and Hoechst 33342, inhibit topoisomerase 1, RNA polymerase 11, DNA polymerase and initiate intrinsic apoptotic cell death. Hoechst 33342-induced apoptosis is associated with disruption of TATA box binding protein/TATA box complexes, replication protein A/single-stranded DNA complexes, topoisomerase I/DNA cleavable complexes and with an increased intracellular concentration of E2F-1 transcription factor and nitric oxide concentration. Nitric oxide and transcription factor activation or respression also regulate the two apoptotic pathways. Some human diseases are associated with excess or deficient rates of apoptosis, and therapeutic strategies to regulate the rate of apoptosis include inhibition or activation of caspases, mRNA antisense to reduce anti-apoptotic factors like Bcl-2 and survivin and recombinant TRAIL to activate pro-apoptotic receptors, DR4 and DR5. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:27 / 45
页数:19
相关论文
共 241 条
[1]   Nitric oxide synthases: structure, function and inhibition [J].
Alderton, WK ;
Cooper, CE ;
Knowles, RG .
BIOCHEMICAL JOURNAL, 2001, 357 (03) :593-615
[2]   Morphological and biochemical characterization and analysis of apoptosis [J].
Allen, RT ;
Hunter, WJ ;
Agrawal, DK .
JOURNAL OF PHARMACOLOGICAL AND TOXICOLOGICAL METHODS, 1997, 37 (04) :215-228
[3]   On the origin, evolution, and nature of programmed cell death: a timeline of four billion years [J].
Ameisen, JC .
CELL DEATH AND DIFFERENTIATION, 2002, 9 (04) :367-393
[4]  
AUCHON D, 2002, MOL CELL, V9, P423
[5]   RPA governs endonuclease switching during processing of Okazaki fragments in eukaryotes [J].
Bae, SH ;
Bae, KH ;
Kim, JA ;
Seo, YS .
NATURE, 2001, 412 (6845) :456-461
[6]   The NF-kappa B and I kappa B proteins: New discoveries and insights [J].
Baldwin, AS .
ANNUAL REVIEW OF IMMUNOLOGY, 1996, 14 :649-683
[7]   Therapeutic applications of apoptosis research [J].
Bamford, M ;
Walkinshaw, G ;
Brown, R .
EXPERIMENTAL CELL RESEARCH, 2000, 256 (01) :1-11
[8]   Functional analysis of the four DNA binding domains of replication protein A - The role of RPA2 in ssDNA binding [J].
Bastin-Shanower, SA ;
Brill, SJ .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (39) :36446-36453
[9]  
Bedner E, 1999, CYTOMETRY, V35, P181, DOI 10.1002/(SICI)1097-0320(19990301)35:3<181::AID-CYTO1>3.0.CO
[10]  
2-5