Xrcc3 and Nbs1 are required for the production of extrachromosomal telomeric circles in human alternative lengthening of telomere cells

被引:67
作者
Compton, Sarah A. [1 ]
Choi, Jun-Hynk [1 ]
Cesare, Anthony J. [1 ]
Ozgur, Sezgin [1 ]
Griffith, Jack D. [1 ]
机构
[1] Univ N Carolina, Lineberger Comprehens Canc Ctr, Chapel Hill, NC 27599 USA
关键词
D O I
10.1158/0008-5472.CAN-06-3672
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
The maintenance of telomere length is essential for the indefinite proliferation of cancer cells. This is most often achieved by the activation of telomerase; however, a substantial number of cancers lack detectable telomerase activity and are classified as using an alternative lengthening of telomeres (ALT) pathway. We showed recently that ALT cells have a high level of extrachromosomal telomeric circles (t circles) that may be a specific marker of the ALT phenotype. The mechanism underlying t circle production and the requirement of t circles in ALT remain unclear. Understanding the specific requirements of ALT is key to developing diagnostic tools and therapies that target this pathway and is critical for the treatment of cancers in which ALT is prevalent, including cancers of neuroepithelial and mesenchymal origin. In this study, we used short hairpin RNAs directed at either Xrcc3 or Nbs1, two proteins involved in the homologous recombination pathway, to determine the role of these proteins in t circle production and the requirement of t circles in maintaining the ALT pathway. We show that Xrcc3 and Nbs1 are indeed required for the production of t circles in human ALT. However, these cells continue to proliferate in the absence of t circles, suggesting that they are not required for the survival of ALT cells.
引用
收藏
页码:1513 / 1519
页数:7
相关论文
共 39 条
[1]   Telomeric recombination in mismatch repair deficient human colon cancer cells after telomerase inhibition [J].
Bechter, OE ;
Zou, Y ;
Walker, W ;
Wright, WE ;
Shay, JW .
CANCER RESEARCH, 2004, 64 (10) :3444-3451
[2]   A human cell line that maintains telomeres in the absence of telomerase and of key markers of ALT [J].
Cerone, MA ;
Autexier, C ;
Londoño-Vallejo, JA ;
Bacchetti, S .
ONCOGENE, 2005, 24 (53) :7893-7901
[3]   Telomeric DNA in ALT cells is characterized by free telomeric circles and heterogeneous t-loops [J].
Cesare, AJ ;
Griffith, JD .
MOLECULAR AND CELLULAR BIOLOGY, 2004, 24 (22) :9948-9957
[4]   Telomere looping in P-sativum (common garden pea) [J].
Cesare, AJ ;
Quinney, N ;
Willcox, S ;
Subramanian, D ;
Griffith, JD .
PLANT JOURNAL, 2003, 36 (02) :271-279
[5]   Two survivor pathways that allow growth in the absence of telomerase are generated by distinct telomere recombination events [J].
Chen, QJ ;
Ijpma, A ;
Greider, CW .
MOLECULAR AND CELLULAR BIOLOGY, 2001, 21 (05) :1819-1827
[6]   Telomere maintenance mechanisms in liposarcomas:: Association with histologic subtypes and disease progression [J].
Costa, Aurora ;
Daidone, Maria Grazia ;
Daprai, Laura ;
Villa, Raffaella ;
Cantu, Sabrina ;
Pilotti, Silvana ;
Mariani, Luigi ;
Gronchi, Alessandro ;
Henson, Jeremy D. ;
Reddel, Roger R. ;
Zaffaroni, Nadia .
CANCER RESEARCH, 2006, 66 (17) :8918-8924
[7]   STRUCTURE AND VARIABILITY OF HUMAN-CHROMOSOME ENDS [J].
DELANGE, T ;
SHIUE, L ;
MYERS, RM ;
COX, DR ;
NAYLOR, SL ;
KILLERY, AM ;
VARMUS, HE .
MOLECULAR AND CELLULAR BIOLOGY, 1990, 10 (02) :518-527
[8]   Merase-independent telomere length maintenance in the absence of alternative lengthening of telomeres-associated promyelocytic leukemia bodies [J].
Fasching, CL ;
Bower, K ;
Reddel, RR .
CANCER RESEARCH, 2005, 65 (07) :2722-2729
[9]   THE RNA COMPONENT OF HUMAN TELOMERASE [J].
FENG, JL ;
FUNK, WD ;
WANG, SS ;
WEINRICH, SL ;
AVILION, AA ;
CHIU, CP ;
ADAMS, RR ;
CHANG, E ;
ALLSOPP, RC ;
YU, JH ;
LE, SY ;
WEST, MD ;
HARLEY, CB ;
ANDREWS, WH ;
GREIDER, CW ;
VILLEPONTEAU, B .
SCIENCE, 1995, 269 (5228) :1236-1241
[10]   THE TELOMERE TERMINAL TRANSFERASE OF TETRAHYMENA IS A RIBONUCLEOPROTEIN ENZYME WITH 2 KINDS OF PRIMER SPECIFICITY [J].
GREIDER, CW ;
BLACKBURN, EH .
CELL, 1987, 51 (06) :887-898